Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Gigascience ; 132024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38573186

RESUMEN

BACKGROUND: Cardiovascular research heavily relies on mouse (Mus musculus) models to study disease mechanisms and to test novel biomarkers and medications. Yet, applying these results to patients remains a major challenge and often results in noneffective drugs. Therefore, it is an open challenge of translational science to develop models with high similarities and predictive value. This requires a comparison of disease models in mice with diseased tissue derived from humans. RESULTS: To compare the transcriptional signatures at single-cell resolution, we implemented an integration pipeline called OrthoIntegrate, which uniquely assigns orthologs and therewith merges single-cell RNA sequencing (scRNA-seq) RNA of different species. The pipeline has been designed to be as easy to use and is fully integrable in the standard Seurat workflow.We applied OrthoIntegrate on scRNA-seq from cardiac tissue of heart failure patients with reduced ejection fraction (HFrEF) and scRNA-seq from the mice after chronic infarction, which is a commonly used mouse model to mimic HFrEF. We discovered shared and distinct regulatory pathways between human HFrEF patients and the corresponding mouse model. Overall, 54% of genes were commonly regulated, including major changes in cardiomyocyte energy metabolism. However, several regulatory pathways (e.g., angiogenesis) were specifically regulated in humans. CONCLUSIONS: The demonstration of unique pathways occurring in humans indicates limitations on the comparability between mice models and human HFrEF and shows that results from the mice model should be validated carefully. OrthoIntegrate is publicly accessible (https://github.com/MarianoRuzJurado/OrthoIntegrate) and can be used to integrate other large datasets to provide a general comparison of models with patient data.


Asunto(s)
Insuficiencia Cardíaca , Humanos , Animales , Ratones , Insuficiencia Cardíaca/genética , Transcriptoma , Volumen Sistólico , Metabolismo Energético , ARN
2.
Circ Res ; 134(10): 1240-1255, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38563133

RESUMEN

BACKGROUND: Pericytes are capillary-associated mural cells involved in the maintenance and stability of the vascular network. Although aging is one of the main risk factors for cardiovascular disease, the consequences of aging on cardiac pericytes are unknown. METHODS: In this study, we have combined single-nucleus RNA sequencing and histological analysis to determine the effects of aging on cardiac pericytes. Furthermore, we have conducted in vivo and in vitro analysis of RGS5 (regulator of G-protein signaling 5) loss of function and finally have performed pericytes-fibroblasts coculture studies to understand the effect of RGS5 deletion in pericytes on the neighboring fibroblasts. RESULTS: Aging reduced the pericyte area and capillary coverage in the murine heart. Single-nucleus RNA sequencing analysis further revealed that the expression of Rgs5 was reduced in cardiac pericytes from aged mice. In vivo and in vitro studies showed that the deletion of RGS5 impaired cardiac function, induced fibrosis, and morphological changes in pericytes characterized by a profibrotic gene expression signature and the expression of different ECM (extracellular matrix) components and growth factors, for example, TGFB2 and PDGFB. Indeed, culturing fibroblasts with the supernatant of RGS5-deficient pericytes induced their activation as evidenced by the increased expression of αSMA (alpha smooth muscle actin) in a TGFß (transforming growth factor beta)2-dependent mechanism. CONCLUSIONS: Our results have identified RGS5 as a crucial regulator of pericyte function during cardiac aging. The deletion of RGS5 causes cardiac dysfunction and induces myocardial fibrosis, one of the hallmarks of cardiac aging.


Asunto(s)
Fibroblastos , Fibrosis , Pericitos , Proteínas RGS , Pericitos/metabolismo , Pericitos/patología , Animales , Proteínas RGS/genética , Proteínas RGS/metabolismo , Proteínas RGS/deficiencia , Fibroblastos/metabolismo , Fibroblastos/patología , Ratones , Células Cultivadas , Envejecimiento/metabolismo , Envejecimiento/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/metabolismo , Miocardio/patología , Masculino , Técnicas de Cocultivo
3.
Science ; 381(6660): 897-906, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37616346

RESUMEN

Aging is a major risk factor for impaired cardiovascular health. Because the aging myocardium is characterized by microcirculatory dysfunction, and because nerves align with vessels, we assessed the impact of aging on the cardiac neurovascular interface. We report that aging reduces nerve density in the ventricle and dysregulates vascular-derived neuroregulatory genes. Aging down-regulates microRNA 145 (miR-145) and derepresses the neurorepulsive factor semaphorin-3A. miR-145 deletion, which increased Sema3a expression or endothelial Sema3a overexpression, reduced axon density, mimicking the aged-heart phenotype. Removal of senescent cells, which accumulated with chronological age in parallel to the decline in nerve density, rescued age-induced denervation, reversed Sema3a expression, preserved heart rate patterns, and reduced electrical instability. These data suggest that senescence-mediated regulation of nerve density contributes to age-associated cardiac dysfunction.


Asunto(s)
Envejecimiento , Senescencia Celular , Corazón , MicroARNs , Densidad Microvascular , Miocardio , Semaforina-3A , Corazón/inervación , Microcirculación , MicroARNs/genética , MicroARNs/metabolismo , Semaforina-3A/genética , Animales , Ratones , Envejecimiento/genética , Envejecimiento/patología , Masculino , Ratones Endogámicos C57BL , Senescencia Celular/genética , Miocardio/patología , Axones
4.
JCI Insight ; 8(5)2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36883566

RESUMEN

The adult mammalian heart has limited regenerative capacity, while the neonatal heart fully regenerates during the first week of life. Postnatal regeneration is mainly driven by proliferation of preexisting cardiomyocytes and supported by proregenerative macrophages and angiogenesis. Although the process of regeneration has been well studied in the neonatal mouse, the molecular mechanisms that define the switch between regenerative and nonregenerative cardiomyocytes are not well understood. Here, using in vivo and in vitro approaches, we identified the lncRNA Malat1 as a key player in postnatal cardiac regeneration. Malat1 deletion prevented heart regeneration in mice after myocardial infarction on postnatal day 3 associated with a decline in cardiomyocyte proliferation and reparative angiogenesis. Interestingly, Malat1 deficiency increased cardiomyocyte binucleation even in the absence of cardiac injury. Cardiomyocyte-specific deletion of Malat1 was sufficient to block regeneration, supporting a critical role of Malat1 in regulating cardiomyocyte proliferation and binucleation, a landmark of mature nonregenerative cardiomyocytes. In vitro, Malat1 deficiency induced binucleation and the expression of a maturation gene program. Finally, the loss of hnRNP U, an interaction partner of Malat1, induced similar features in vitro, suggesting that Malat1 regulates cardiomyocyte proliferation and binucleation by hnRNP U to control the regenerative window in the heart.


Asunto(s)
Corazón , Ribonucleoproteína Heterogénea-Nuclear Grupo U , Infarto del Miocardio , Miocitos Cardíacos , ARN Largo no Codificante , Regeneración , Animales , Ratones , Corazón/fisiología , Corazón/fisiopatología , Lesiones Cardíacas/genética , Lesiones Cardíacas/metabolismo , Lesiones Cardíacas/fisiopatología , Ribonucleoproteína Heterogénea-Nuclear Grupo U/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo U/metabolismo , Macrófagos/metabolismo , Macrófagos/fisiología , Mamíferos , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Infarto del Miocardio/fisiopatología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Neovascularización Fisiológica/genética , Neovascularización Fisiológica/fisiología , Regeneración/genética , Regeneración/fisiología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
5.
EMBO Rep ; 23(6): e54157, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35527520

RESUMEN

Vascular integrity is essential for organ homeostasis to prevent edema formation and infiltration of inflammatory cells. Long non-coding RNAs (lncRNAs) are important regulators of gene expression and often expressed in a cell type-specific manner. By screening for endothelial-enriched lncRNAs, we identified the undescribed lncRNA NTRAS to control endothelial cell functions. Silencing of NTRAS induces endothelial cell dysfunction in vitro and increases vascular permeability and lethality in mice. Biochemical analysis revealed that NTRAS, through its CA-dinucleotide repeat motif, sequesters the splicing regulator hnRNPL to control alternative splicing of tight junction protein 1 (TJP1; also named zona occludens 1, ZO-1) pre-mRNA. Deletion of the hnRNPL binding motif in mice (Ntras∆CA/∆CA ) significantly repressed TJP1 exon 20 usage, favoring expression of the TJP1α- isoform, which augments permeability of the endothelial monolayer. Ntras∆CA/∆CA mice further showed reduced retinal vessel growth and increased vascular permeability and myocarditis. In summary, this study demonstrates that NTRAS is an essential gatekeeper of vascular integrity.


Asunto(s)
ARN Largo no Codificante , Empalme Alternativo , Animales , Células Endoteliales/metabolismo , Ratones , Permeabilidad , Isoformas de Proteínas/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Uniones Estrechas/metabolismo
6.
Circ Res ; 130(1): 67-79, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34789007

RESUMEN

BACKGROUND: Circular RNAs (circRNAs) are generated by back splicing of mostly mRNAs and are gaining increasing attention as a novel class of regulatory RNAs that control various cellular functions. However, their physiological roles and functional conservation in vivo are rarely addressed, given the inherent challenges of their genetic inactivation. Here, we aimed to identify locus conserved circRNAs in mice and humans, which can be genetically deleted due to retained intronic elements not contained in the mRNA host gene to eventually address functional conservation. METHODS AND RESULTS: Combining published endothelial RNA-sequencing data sets with circRNAs of the circATLAS databank, we identified locus-conserved circRNA retaining intronic elements between mice and humans. CRISPR/Cas9 mediated genetic depletion of the top expressed circRNA cZfp292 resulted in an altered endothelial morphology and aberrant flow alignment in the aorta in vivo. Consistently, depletion of cZNF292 in endothelial cells in vitro abolished laminar flow-induced alterations in cell orientation, paxillin localization and focal adhesion organization. Mechanistically, we identified the protein SDOS (syndesmos) to specifically interact with cZNF292 in endothelial cells by RNA-affinity purification and subsequent mass spectrometry analysis. Silencing of SDOS or its protein binding partner Syndecan-4, or mutation of the SDOS-cZNF292 binding site, prevented laminar flow-induced cytoskeletal reorganization thereby recapitulating cZfp292 knockout phenotypes. CONCLUSIONS: Together, our data reveal a hitherto unknown role of cZNF292/cZfp292 in endothelial flow responses, which influences endothelial shape.


Asunto(s)
Proteínas de Unión al ADN , Células Endoteliales , Endotelio Vascular , ARN Circular , Factores de Transcripción , Animales , Humanos , Ratones , Circulación Sanguínea , Proteínas de Unión al ADN/genética , Células Endoteliales/metabolismo , Células Endoteliales/fisiología , Endotelio Vascular/citología , Endotelio Vascular/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones Endogámicos C57BL , Unión Proteica , ARN Circular/genética , ARN Circular/metabolismo , Sindecano-4/metabolismo , Factores de Transcripción/genética
7.
Nat Commun ; 12(1): 3964, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-34172720

RESUMEN

The regulation of bone vasculature by chronic diseases, such as heart failure is unknown. Here, we describe the effects of myocardial infarction and post-infarction heart failure on the bone vascular cell composition. We demonstrate an age-independent loss of type H endothelium in heart failure after myocardial infarction in both mice and humans. Using single-cell RNA sequencing, we delineate the transcriptional heterogeneity of human bone marrow endothelium, showing increased expression of inflammatory genes, including IL1B and MYC, in ischemic heart failure. Endothelial-specific overexpression of MYC was sufficient to induce type H bone endothelial cells, whereas inhibition of NLRP3-dependent IL-1ß production partially prevented the post-myocardial infarction loss of type H vasculature in mice. These results provide a rationale for using anti-inflammatory therapies to prevent or reverse the deterioration of bone vascular function in ischemic heart disease.


Asunto(s)
Huesos/irrigación sanguínea , Células Endoteliales/patología , Insuficiencia Cardíaca/fisiopatología , Infarto del Miocardio/fisiopatología , Anciano , Animales , Huesos/fisiopatología , Estudios de Casos y Controles , Células Endoteliales/metabolismo , Femenino , Furanos/farmacología , Genes myc , Insuficiencia Cardíaca/etiología , Células Madre Hematopoyéticas/patología , Humanos , Indenos/farmacología , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Infarto del Miocardio/complicaciones , Infarto del Miocardio/genética , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Sulfonamidas/farmacología
8.
Atherosclerosis ; 327: 49-58, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34038763

RESUMEN

BACKGROUND AND AIMS: Preclinical data suggest that the ageing-induced miR-34a regulates vascular senescence. Herein we sought to assess whether the miR-34 family members miR-34a, miR-34b and miR-34c are involved in human arterial disease. METHODS: Expression levels of miR-34a/b/c were quantified by TaqMan assay in peripheral blood mononuclear cells (PBMCs) derived from a consecutive cohort of 221 subjects who underwent cardiovascular risk assessment and thorough vascular examination for aortic stiffness and extent of arterial atherosclerosis. RESULTS: High miR-34a was independently associated with the presence of CAD [OR (95%C.I.): 3.87 (1.56-9.56); p = 0.003] and high miR-34c with the number of diseased arterial beds [OR (95%C.I.): 1.88 (1.034-3.41); p = 0.038], while concurrent high expression of miR-34-a/c or all three miR-34a/b/c was associated with aortic stiffening (miR-34a/c: p = 0.022; miR-34a/b/c: p = 0.041) and with the extent of atherosclerosis [OR (95%C.I.) for number of coronary arteries [miR-34a/c: 3.29 (1.085-9.95); miR-34a/b/c: 6.06 (1.74-21.2)] and number of diseased arterial beds [miR-34a/c: 3.51 (1.45-8.52); miR-34a/b/c: 2.89 (1.05-7.92)] after controlling for possible confounders (p < 0.05 for all). Mechanistically, the increased levels of miR-34a or miR-34c were inversely associated with expression of SIRT1 or JAG1, NOTCH2, CTNNB1 and ATF1, respectively. The association of miR-34a/c or miR-34a/b/c with CAD was mainly mediated through SIRT1 and to a lesser extent through JAG1 as revealed by generalized structural equation modeling. Leukocyte-specific ablation of miR-34a/b/c ameliorates atherosclerotic plaque development and increases Sirt1 and Jag1 expression in an atherosclerosis mouse model confirming the human findings. CONCLUSIONS: The present study reveals the clinical significance of the additive role of miR-34a/b/c in vascular ageing and atherosclerotic vascular disease.


Asunto(s)
Envejecimiento , Aterosclerosis , MicroARNs , Humanos , Proteína Jagged-1 , Leucocitos Mononucleares , Sirtuina 1
9.
Nat Commun ; 12(1): 681, 2021 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33514719

RESUMEN

Endothelial cells play a critical role in the adaptation of tissues to injury. Tissue ischemia induced by infarction leads to profound changes in endothelial cell functions and can induce transition to a mesenchymal state. Here we explore the kinetics and individual cellular responses of endothelial cells after myocardial infarction by using single cell RNA sequencing. This study demonstrates a time dependent switch in endothelial cell proliferation and inflammation associated with transient changes in metabolic gene signatures. Trajectory analysis reveals that the majority of endothelial cells 3 to 7 days after myocardial infarction acquire a transient state, characterized by mesenchymal gene expression, which returns to baseline 14 days after injury. Lineage tracing, using the Cdh5-CreERT2;mT/mG mice followed by single cell RNA sequencing, confirms the transient mesenchymal transition and reveals additional hypoxic and inflammatory signatures of endothelial cells during early and late states after injury. These data suggest that endothelial cells undergo a transient mes-enchymal activation concomitant with a metabolic adaptation within the first days after myocardial infarction but do not acquire a long-term mesenchymal fate. This mesenchymal activation may facilitate endothelial cell migration and clonal expansion to regenerate the vascular network.


Asunto(s)
Endotelio/patología , Transición Epitelial-Mesenquimal/genética , Infarto del Miocardio/patología , Miocardio/patología , Animales , Movimiento Celular/genética , Plasticidad de la Célula/genética , Proliferación Celular/genética , Células Cultivadas , Modelos Animales de Enfermedad , Células Endoteliales/patología , Endotelio/citología , Genes Reporteros/genética , Células Endoteliales de la Vena Umbilical Humana , Humanos , Proteínas Luminiscentes/genética , Masculino , Ratones , Ratones Transgénicos , Miocardio/citología , RNA-Seq , Análisis de la Célula Individual
10.
Nucleic Acid Ther ; 30(6): 335-345, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32707001

RESUMEN

MicroRNA (miRNA) inhibition is a promising therapeutic strategy in several disease indications. MRG-110 is a locked nucleic acid-based antisense oligonucleotide that targets miR-92a-3p and experimentally was shown to have documented therapeutic effects on cardiovascular disease and wound healing. To gain first insights into the activity of anti-miR-92a in humans, we investigated miR-92a-3p expression in several blood compartments and assessed the effect of MRG-110 on target derepression. Healthy adults were randomly assigned (5:2) to receive a single intravenous dose of MRG-110 or placebo in one of seven sequential ascending intravenous dose cohorts ranging from 0.01 to 1.5 mg/kg body weight. MiR-92a-3p whole blood levels were time and dose dependently decreased with half-maximal inhibition of 0.27 and 0.31 mg/kg at 24 and 72 h after dosing, respectively. In the high-dose groups, >95% inhibition was detected at 24-72 h postinfusion and significant inhibition was observed for 2 weeks. Similar inhibitory effects were detected in isolated CD31+ cells, and miR-92a-3p expression was also inhibited in extracellular vesicles in the high-dose group. Target derepression was measured in whole blood and showed that ITGA5 and CD93 were increased at a dose of 1.5 mg/kg. Single-cell RNA sequencing of peripheral blood cells revealed a cell type-specific derepression of miR-92a targets. Together this study demonstrates that systemic infusion of anti-miR-92a efficiently inhibits miR-92a in the peripheral blood compartment and derepresses miR-92a targets in humans.


Asunto(s)
Enfermedades Cardiovasculares/tratamiento farmacológico , Integrinas/genética , Glicoproteínas de Membrana/genética , MicroARNs/genética , Oligonucleótidos/administración & dosificación , Receptores de Complemento/genética , Adolescente , Adulto , Antagomirs/administración & dosificación , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/patología , Linaje de la Célula/genética , Vesículas Extracelulares/efectos de los fármacos , Vesículas Extracelulares/genética , Femenino , Humanos , Masculino , MicroARNs/antagonistas & inhibidores , Persona de Mediana Edad , Oligonucleótidos Antisentido/administración & dosificación , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/genética , Cicatrización de Heridas/efectos de los fármacos , Cicatrización de Heridas/genética , Adulto Joven
11.
Nat Commun ; 11(1): 2039, 2020 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-32341350

RESUMEN

Long non-coding RNAs (lncRNAs) contribute to cardiac (patho)physiology. Aging is the major risk factor for cardiovascular disease with cardiomyocyte apoptosis as one underlying cause. Here, we report the identification of the aging-regulated lncRNA Sarrah (ENSMUST00000140003) that is anti-apoptotic in cardiomyocytes. Importantly, loss of SARRAH (OXCT1-AS1) in human engineered heart tissue results in impaired contractile force development. SARRAH directly binds to the promoters of genes downregulated after SARRAH silencing via RNA-DNA triple helix formation and cardiomyocytes lacking the triple helix forming domain of Sarrah show an increase in apoptosis. One of the direct SARRAH targets is NRF2, and restoration of NRF2 levels after SARRAH silencing partially rescues the reduction in cell viability. Overexpression of Sarrah in mice shows better recovery of cardiac contractile function after AMI compared to control mice. In summary, we identified the anti-apoptotic evolutionary conserved lncRNA Sarrah, which is downregulated by aging, as a regulator of cardiomyocyte survival.


Asunto(s)
Apoptosis , Infarto del Miocardio/genética , Miocitos Cardíacos/citología , ARN Largo no Codificante/genética , Envejecimiento , Animales , Proteínas Portadoras/genética , Supervivencia Celular , Coenzima A Transferasas/genética , Modelos Animales de Enfermedad , Silenciador del Gen , Humanos , Proteínas con Dominio LIM/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/genética , ARN sin Sentido/genética , ARN Interferente Pequeño/genética , Factores de Transcripción p300-CBP/genética
12.
Proc Natl Acad Sci U S A ; 117(8): 4180-4187, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32034099

RESUMEN

Endothelial cells play an important role in maintenance of the vascular system and the repair after injury. Under proinflammatory conditions, endothelial cells can acquire a mesenchymal phenotype by a process named endothelial-to-mesenchymal transition (EndMT), which affects the functional properties of endothelial cells. Here, we investigated the epigenetic control of EndMT. We show that the histone demethylase JMJD2B is induced by EndMT-promoting, proinflammatory, and hypoxic conditions. Silencing of JMJD2B reduced TGF-ß2-induced expression of mesenchymal genes, prevented the alterations in endothelial morphology and impaired endothelial barrier function. Endothelial-specific deletion of JMJD2B in vivo confirmed a reduction of EndMT after myocardial infarction. EndMT did not affect global H3K9me3 levels but induced a site-specific reduction of repressive H3K9me3 marks at promoters of mesenchymal genes, such as Calponin (CNN1), and genes involved in TGF-ß signaling, such as AKT Serine/Threonine Kinase 3 (AKT3) and Sulfatase 1 (SULF1). Silencing of JMJD2B prevented the EndMT-induced reduction of H3K9me3 marks at these promotors and further repressed these EndMT-related genes. Our study reveals that endothelial identity and function is critically controlled by the histone demethylase JMJD2B, which is induced by EndMT-promoting, proinflammatory, and hypoxic conditions, and supports the acquirement of a mesenchymal phenotype.


Asunto(s)
Células Endoteliales/enzimología , Transición Epitelial-Mesenquimal , Histona Demetilasas con Dominio de Jumonji/metabolismo , Células Madre Mesenquimatosas/citología , Células Endoteliales/citología , Histonas/metabolismo , Humanos , Histona Demetilasas con Dominio de Jumonji/genética , Células Madre Mesenquimatosas/enzimología , Factor de Crecimiento Transformador beta2/metabolismo
13.
Cardiovasc Res ; 115(1): 230-242, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30107531

RESUMEN

Aims: Long non-coding RNAs (lncRNAs) have been shown to regulate numerous processes in the human genome, but the function of these transcripts in vascular aging is largely unknown. We aim to characterize the expression of lncRNAs in endothelial aging and analyse the function of the highly conserved lncRNA H19. Methods and results: H19 was downregulated in endothelium of aged mice. In human, atherosclerotic plaques H19 was mainly expressed by endothelial cells and H19 was significantly reduced in comparison to healthy carotid artery biopsies. Loss of H19 led to an upregulation of p16 and p21, reduced proliferation and increased senescence in vitro. Depletion of H19 in aortic rings of young mice inhibited sprouting capacity. We generated endothelial-specific inducible H19 deficient mice (H19iEC-KO), resulting in increased systolic blood pressure compared with control littermates (Ctrl). These H19iEC-KO and Ctrl mice were subjected to hindlimb ischaemia, which showed reduced capillary density in H19iEC-KO mice. Mechanistically, exon array analysis revealed an involvement of H19 in IL-6 signalling. Accordingly, intercellular adhesion molecule 1 and vascular cell adhesion molecule 1 were upregulated upon H19 depletion. A luciferase reporter screen for differential transcription factor activity revealed STAT3 as being induced upon H19 depletion and repressed after H19 overexpression. Furthermore, depletion of H19 increased the phosphorylation of STAT3 at TYR705 and pharmacological inhibition of STAT3 activation abolished the effects of H19 silencing on p21 and vascular cell adhesion molecule 1 expression as well as proliferation. Conclusion: These data reveal a pivotal role for the lncRNA H19 in controlling endothelial cell aging.


Asunto(s)
Enfermedades de las Arterias Carótidas/metabolismo , Senescencia Celular , Células Endoteliales/metabolismo , Isquemia/metabolismo , Músculo Esquelético/irrigación sanguínea , ARN Largo no Codificante/metabolismo , Factor de Transcripción STAT3/metabolismo , Animales , Enfermedades de las Arterias Carótidas/genética , Enfermedades de las Arterias Carótidas/patología , Estudios de Casos y Controles , Células Cultivadas , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/patología , Femenino , Miembro Posterior , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Isquemia/genética , Isquemia/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Neovascularización Fisiológica , Fosforilación , Placa Aterosclerótica , ARN Largo no Codificante/genética , Transducción de Señal , Molécula 1 de Adhesión Celular Vascular/metabolismo
14.
Circulation ; 139(10): 1320-1334, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30586743

RESUMEN

BACKGROUND: The majority of the human genome comprises noncoding sequences, which are in part transcribed as long noncoding RNAs (lncRNAs). lncRNAs exhibit multiple functions, including the epigenetic control of gene expression. In this study, the effect of the lncRNA MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) on atherosclerosis was examined. METHODS: The effect of MALAT1 on atherosclerosis was determined in apolipoprotein E-deficient (Apoe-/-) MALAT1-deficient (Malat1-/-) mice that were fed with a high-fat diet and by studying the regulation of MALAT1 in human plaques. RESULTS: Apoe-/- Malat1-/- mice that were fed a high-fat diet showed increased plaque size and infiltration of inflammatory CD45+ cells compared with Apoe-/- Malat1+/+ control mice. Bone marrow transplantation of Apoe-/- Malat1-/- bone marrow cells in Apoe-/- Malat1+/+ mice enhanced atherosclerotic lesion formation, which suggests that hematopoietic cells mediate the proatherosclerotic phenotype. Indeed, bone marrow cells isolated from Malat1-/- mice showed increased adhesion to endothelial cells and elevated levels of proinflammatory mediators. Moreover, myeloid cells of Malat1-/- mice displayed enhanced adhesion to atherosclerotic arteries in vivo. The anti-inflammatory effects of MALAT1 were attributed in part to reduction of the microRNA miR-503. MALAT1 expression was further significantly decreased in human plaques compared with normal arteries and was lower in symptomatic versus asymptomatic patients. Lower levels of MALAT1 in human plaques were associated with a worse prognosis. CONCLUSIONS: Reduced levels of MALAT1 augment atherosclerotic lesion formation in mice and are associated with human atherosclerotic disease. The proatherosclerotic effects observed in Malat1-/- mice were mainly caused by enhanced accumulation of hematopoietic cells.


Asunto(s)
Aorta/metabolismo , Aortitis/metabolismo , Aterosclerosis/metabolismo , Células de la Médula Ósea/metabolismo , Hematopoyesis , Placa Aterosclerótica , ARN Largo no Codificante/metabolismo , Animales , Aorta/patología , Aortitis/genética , Aortitis/patología , Aterosclerosis/genética , Aterosclerosis/patología , Células de la Médula Ósea/patología , Trasplante de Médula Ósea , Estudios de Casos y Controles , Modelos Animales de Enfermedad , Regulación hacia Abajo , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , Transducción de Señal
15.
Circulation ; 138(22): 2545-2558, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30571345

RESUMEN

BACKGROUND: MicroRNAs (miRs) regulate nearly all biological pathways. Because the dysregulation of miRs can lead to disease progression, they are being explored as novel therapeutic targets. However, the cell type-specific effects of miRs in the heart are poorly understood. Thus, we assessed miR target regulation using miR-92a-3p as an example. Inhibition of miR-92a is known to improve endothelial cell function and recovery after acute myocardial infarction. METHODS: miR-92a-3p was inhibited by locked nucleic acid (LNA)-based antimiR (LNA-92a) in mice after myocardial infarction. Expression of regulated genes was evaluated 3 days after myocardial infarction by RNA sequencing of isolated endothelial cells, cardiomyocytes, fibroblasts, and CD45+ hematopoietic cells. RESULTS: LNA-92a depleted miR-92a-3p expression in all cell types and derepressed predicted miR-92a-3p targets in a cell type-specific manner. RNAseq showed endothelial cell-specific regulation of autophagy-related genes. Imaging confirmed increased endothelial cell autophagy in LNA-92a treated relative to control animals. In vitro inhibition of miR-92a-3p augmented EC autophagy, derepressed autophagy-related gene 4a, and increased luciferase activity in autophagy-related gene 4a 3'UTR containing reporters, whereas miR-92a-3p overexpression had the opposite effect. In cardiomyocytes, LNA-92a derepressed metabolism-related genes, notably, the high-density lipoprotein transporter Abca8b. LNA-92a further increased fatty acid uptake and mitochondrial function in cardiomyocytes in vitro. CONCLUSIONS: Our data show that miRs have cell type-specific effects in vivo. Analysis of miR targets in cell subsets disclosed a novel function of miR-92a-3p in endothelial cell autophagy and cardiomyocyte metabolism. Because autophagy is upregulated during ischemia to supply nutrients and cardiomyocyte metabolic-switching improves available substrate utilization, these prosurvival mechanisms may diminish tissue damage.


Asunto(s)
MicroARNs/metabolismo , Regiones no Traducidas 3' , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Antagomirs/metabolismo , Autofagia , Modelos Animales de Enfermedad , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Oligonucleótidos/química , Ratas
16.
J Struct Biol ; 203(2): 71-80, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29545204

RESUMEN

Baculovirus-insect cell expression system has become one of the most widely used eukaryotic expression systems for heterologous protein production in many laboratories. The availability of robust insect cell lines, serum-free media, a range of vectors and commercially-packaged kits have supported the demand for maximizing the exploitation of the baculovirus-insect cell expression system. Naturally, this resulted in varied strategies adopted by different laboratories to optimize protein production. Most laboratories have preference in using either the E. coli transposition-based recombination bacmid technology (e.g. Bac-to-Bac®) or homologous recombination transfection within insect cells (e.g. flashBAC™). Limited data is presented in the literature to benchmark the protocols used for these baculovirus vectors to facilitate the selection of a system for optimal production of target proteins. Taking advantage of the Protein Production and Purification Partnership in Europe (P4EU) scientific network, a benchmarking initiative was designed to compare the diverse protocols established in thirteen individual laboratories. This benchmarking initiative compared the expression of four selected intracellular proteins (mouse Dicer-2, 204 kDa; human ABL1 wildtype, 126 kDa; human FMRP, 68 kDa; viral vNS1-H1, 76 kDa). Here, we present the expression and purification results on these proteins and highlight the significant differences in expression yields obtained using different commercially-packaged baculovirus vectors. The highest expression level for difficult-to-express intracellular protein candidates were observed with the EmBacY baculovirus vector system.


Asunto(s)
Baculoviridae/genética , Vectores Genéticos/genética , Proteínas Recombinantes/metabolismo , Animales , Línea Celular , Escherichia coli/genética , Escherichia coli/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Humanos , Ratones , Proteínas Proto-Oncogénicas c-abl/genética , Proteínas Proto-Oncogénicas c-abl/metabolismo , Proteínas Recombinantes/genética , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Células Sf9
18.
Stem Cells ; 34(8): 2236-48, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27145479

RESUMEN

Administration of bone marrow-derived mononuclear cells (BMC) may increase cardiac function after myocardial ischemia. However, the functional capacity of BMC derived from chronic heart failure (CHF) patients is significantly impaired. As modulation of the energy metabolism allows cells to match the divergent demands of the environment, we examined the regulation of energy metabolism in BMC from patients and healthy controls (HC). The glycolytic capacity of CHF-derived BMC is reduced compared to HC, whereas BMC of metabolically activated bone marrow after acute myocardial infarction reveal increased metabolism. The correlation of metabolic pathways with the functional activity of cells indicates an influence of metabolism on cell function. Reducing glycolysis without profoundly affecting ATP-production reversibly reduces invasion as well as colony forming capacity and abolishes proliferation of CD34(+) CD38(-) lin(-) hematopoietic stem and progenitor cells (HSPC). Ex vivo inhibition of glycolysis further reduced the pro-angiogenic activity of transplanted cells in a hind limb ischemia model in vivo. In contrast, inhibition of respiration, without affecting total ATP production, leads to a compensatory increase in glycolytic capacity correlating with increased colony forming capacity. Isolated CD34(+) , CXCR4(+) , and CD14(+) cells showed higher glycolytic activity compared to their negative counterparts. Metabolic activity was profoundly modulated by the composition of media used to store or culture BMC. This study provides first evidence that metabolic alterations influence the functional activity of human HSPC and BMC independent of ATP production. Changing the balance between respiration and glycolysis might be useful to improve patient-derived cells for clinical cardiac cell therapy. Stem Cells 2016;34:2236-2248.


Asunto(s)
Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Insuficiencia Cardíaca/terapia , Isquemia Miocárdica/terapia , Animales , Respiración de la Célula , Ensayo de Unidades Formadoras de Colonias , Medios de Cultivo , Glucólisis , Insuficiencia Cardíaca/patología , Miembro Posterior/irrigación sanguínea , Miembro Posterior/patología , Humanos , Metabolómica , Ratones Desnudos , MicroARNs/metabolismo , Isquemia Miocárdica/patología , Neovascularización Fisiológica , Factor de Transcripción STAT5/metabolismo
19.
J Mol Cell Cardiol ; 94: 145-152, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27071338

RESUMEN

Heart failure due to myocardial infarction is a major cause of mortality. The microRNA (miR) family let-7 is expressed during embryonic development and is up-regulated in differentiated cells. The aim of this study was to study the role of let-7 after acute myocardial infarction (AMI). We designed an antimiR to inhibit the highest expressed members of the let-7 family, let-7 a, b and c. Administration at day 0 and day 2 after AMI resulted in sustained knockdown of let-7 after 28days. Let-7 inhibition prevented deterioration of cardiac functions compared to control treatment which was especially due to improvements in the infarcted, apical cardiac segments. We observed higher contents of fibrosis in the border zone as well as increased numbers of cells positive for TCF21, which is also expressed in epicardial cells. Markers were augmented after let-7 inhibition and let-7 blocked EMT in epicardial cells in vitro. Lineage tracing in TCF21(iCre/+):R26R(tdT) mice showed abundant tomato positive cells in the infarct and border zone. In conclusion, let-7 inhibition resulted in functional benefits due to an increase in recruitment of epicardial cells and EMT.


Asunto(s)
Transición Epitelial-Mesenquimal , Regulación de la Expresión Génica , MicroARNs/genética , Infarto del Miocardio/genética , Infarto del Miocardio/fisiopatología , Disfunción Ventricular/genética , Animales , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Linaje de la Célula , Transición Epitelial-Mesenquimal/genética , Fibrosis , Masculino , Ratones , Ratones Transgénicos , MicroARNs/química , Infarto del Miocardio/patología
20.
Obesity (Silver Spring) ; 22(11): 2352-60, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25141837

RESUMEN

OBJECTIVE: To assess the effect of long-term pharmacological inhibition of miR-21 in a model of metabolic syndrome and obesity. METHODS: Aged db/db mice were treated with locked nucleic acid-modified anti-miRs directed against miR-21 (LNA-21), control LNAs or PBS for 18 weeks. Cardiac function was assessed by echocardiography and the effect on body weight and white adipose tissue (WAT) was evaluated. RESULTS: MiR-21 expression was efficiently inhibited in the heart and WAT with no apparent liver toxicity or deterioration of kidney function. MiR-21 inhibition had no effect on cardiac hypertrophy as well as systolic and diastolic cardiac functions. However, levels of cardiac collagen 1 were modestly reduced in LNA-21 treated mice. MiR-21 inhibition reduced body weight, as well as adipocyte size and serum triglycerides were significantly decreased. The miR-21 targets TGFß-receptor 2 (TGFBR2) and phosphatase and tensin homolog (PTEN) were derepressed in WAT of LNA-21 treated mice and Sprouty1 and 2 were increased after miR-21 inhibition. CONCLUSIONS: Long-term treatment with LNA-21 is safe and efficiently suppresses miR-21 expression. Cardiac function was not affected. LNA-21 treatment led to a significant weight loss and reduces adipocyte size as well as derepression of the targets TGFRB2, PTEN, and Sprouty1 and 2.


Asunto(s)
MicroARNs/antagonistas & inhibidores , MicroARNs/genética , Obesidad/genética , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Animales , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Síndrome Metabólico/complicaciones , Síndrome Metabólico/genética , Síndrome Metabólico/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Obesidad/complicaciones , Obesidad/metabolismo , Oligonucleótidos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...