Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Geohealth ; 8(4): e2023GH000982, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38560558

RESUMEN

Prescribed fires (fires intentionally set for mitigation purposes) produce pollutants, which have negative effects on human and animal health. One of the pollutants produced from fires is fine particulate matter (PM2.5). The Flint Hills (FH) region of Kansas experiences extensive prescribed burning each spring (March-May). Smoke from prescribed fires is often understudied due to a lack of monitoring in the rural regions where prescribed burning occurs, as well as the short duration and small size of the fires. Our goal was to attribute PM2.5 concentrations to the prescribed burning in the FH. To determine PM2.5 increases from local burning, we used low-cost PM2.5 sensors (PurpleAir) and satellite observations. The FH were also affected by smoke transported from fires in other regions during 2022. We separated the transported smoke from smoke from fires in eastern Kansas. Based on data from the PurpleAir sensors, we found the 24-hr median PM2.5 to increase by 3.0-5.3 µg m-3 (based on different estimates) on days impacted by smoke from fires in the eastern Kansas region compared to days unimpacted by smoke. The FH region was the most impacted by smoke PM2.5 compared to other regions of Kansas, as observed in satellite products and in situ measurements. Additionally, our study found that hourly PM2.5 estimates from a satellite-derived product aligned with our ground-based measurements. Satellite-derived products are useful in rural areas like the FH, where monitors are scarce, providing important PM2.5 estimates.

2.
J Air Waste Manag Assoc ; 73(12): 914-929, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37850691

RESUMEN

Carlsbad Caverns National Park (CAVE), located in southeastern New Mexico, experiences elevated ground-level ozone (O3) exceeding the National Ambient Air Quality Standard (NAAQS) of 70 ppbv. It is situated adjacent to the Permian Basin, one of the largest oil and gas (O&G) producing regions in the US. In 2019, the Carlsbad Caverns Air Quality Study (CarCavAQS) was conducted to examine impacts of different sources on ozone precursors, including nitrogen oxides (NOx) and volatile organic compounds (VOCs). Here, we use positive matrix factorization (PMF) analysis of speciated VOCs to characterize VOC sources at CAVE during the study. Seven factors were identified. Three factors composed largely of alkanes and aromatics with different lifetimes were attributed to O&G development and production activities. VOCs in these factors were typical of those emitted by O&G operations. Associated residence time analyses (RTA) indicated their contributions increased in the park during periods of transport from the Permian Basin. These O&G factors were the largest contributor to VOC reactivity with hydroxyl radicals (62%). Two PMF factors were rich in photochemically generated secondary VOCs; one factor contained species with shorter atmospheric lifetimes and one with species with longer lifetimes. RTA of the secondary factors suggested impacts of O&G emissions from regions farther upwind, such as Eagle Ford Shale and Barnett Shale formations. The last two factors were attributed to alkenes likely emitted from vehicles or other combustion sources in the Permian Basin and regional background VOCs, respectively.Implications: Carlsbad Caverns National Park experiences ground-level ozone exceeding the National Ambient Air Quality Standard. Volatile organic compounds are critical precursors to ozone formation. Measurements in the Park identify oil and gas production and development activities as the major contributors to volatile organic compounds. Emissions from the adjacent Permian Basin contributed to increases in primary species that enhanced local ozone formation. Observations of photochemically generated compounds indicate that ozone was also transported from shale formations and basins farther upwind. Therefore, emission reductions of volatile organic compounds from oil and gas activities are important for mitigating elevated O3 in the region.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Compuestos Orgánicos Volátiles/análisis , Cuevas , Parques Recreativos , Ozono/análisis , Monitoreo del Ambiente , China , Emisiones de Vehículos/análisis
3.
J Air Waste Manag Assoc ; 73(12): 951-968, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37850745

RESUMEN

Carlsbad Caverns National Park (CAVE) is located in southeastern New Mexico and is adjacent to the Permian Basin, one of the most productive oil and natural gas (O&G) production regions in the United States. Since 2018, ozone (O3) at CAVE has frequently exceeded the 70 ppbv 8-hour National Ambient Air Quality Standard. We examine the influence of regional emissions on O3 formation using observations of O3, nitrogen oxides (NOx = NO + NO2), a suite of volatile organic compounds (VOCs), peroxyacetyl nitrate (PAN), and peroxypropionyl nitrate (PPN). Elevated O3 and its precursors are observed when the wind is from the southeast, the direction of the Permian Basin. We identify 13 days during the July 25 to September 5, 2019 study period when the maximum daily 8-hour average (MDA8) O3 exceeded 65 ppbv; MDA8 O3 exceeded 70 ppbv on 5 of these days. The results of a positive matrix factorization (PMF) analysis are used to identify and attribute source contributions of VOCs and NOx. On days when the winds are from the southeast, there are larger contributions from factors associated with primary O&G emissions; and, on high O3 days, there is more contribution from factors associated with secondary photochemical processing of O&G emissions. The observed ratio of VOCs to NOx is consistently high throughout the study period, consistent with NOx-limited O3 production. Finally, all high O3 days coincide with elevated acyl peroxy nitrate abundances with PPN to PAN ratios > 0.15 ppbv ppbv-1 indicating that anthropogenic VOC precursors, and often alkanes specifically, dominate the photochemistry.Implications: The results above strongly indicate NOx-sensitive photochemistry at Carlsbad Caverns National Park indicating that reductions in NOx emissions should drive reductions in O3. However, the NOx-sensitivity is largely driven by emissions of NOx into a VOC-rich environment, and a high PPN:PAN ratio and its relationship to O3 indicate substantial influence from alkanes in the regional photochemistry. Thus, simultaneous reductions in emissions of NOx and non-methane VOCs from the oil and gas sector should be considered for reducing O3 at Carlsbad Caverns National Park. Reductions in non-methane VOCs will have the added benefit of reducing formation of other secondary pollutants and air toxics.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Compuestos Orgánicos Volátiles , Ozono/análisis , Contaminantes Atmosféricos/análisis , Nitratos/análisis , Compuestos Orgánicos Volátiles/análisis , New Mexico , Cuevas , Parques Recreativos , Alcanos/análisis , Monitoreo del Ambiente/métodos , China
4.
Nat Food ; 4(8): 664-672, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37550540

RESUMEN

Wildfires are a growing concern to society and the environment in many parts of the world. Within the United States, the land area burned by wildfires has steadily increased over the past 40 years. Agricultural land management is widely understood as a force that alters fire regimes, but less is known about how wildfires, in turn, impact the agriculture sector. Based on an extensive literature review, we identify three pathways of impact-direct, downwind and downstream-through which wildfires influence agricultural resources (soil, water, air and photosynthetically active radiation), labour (agricultural workers) and products (crops and livestock). Through our pathways framework, we highlight the complexity of wildfire-agriculture interactions and the need for collaborative, systems-oriented research to better quantify the magnitude of wildfire impacts and inform the adaptation of agricultural systems to an increasingly fire-prone future.


Asunto(s)
Incendios , Incendios Forestales , Humanos , Estados Unidos , Agricultura , Agua , Predicción
5.
Geohealth ; 7(2): e2022GH000673, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36743737

RESUMEN

Long-term exposure to ambient fine particulate matter (PM2.5) is the second leading risk factor of premature death in Sub-Saharan Africa. We use GEOS-Chem to quantify the effects of (a) trash burning, (b) residential solid-fuel burning, and (c) open biomass burning (BB) (i.e., landscape fires) on ambient PM2.5 and PM2.5-attributable mortality in Africa. Using a series of sensitivity simulations, we excluded each of the three combustion sources in each of five African regions. We estimate that in 2017 emissions from these three combustion sources within Africa increased global ambient PM2.5 by 2%, leading to 203,000 (95% confidence interval: 133,000-259,000) premature mortalities yr-1 globally and 167,000 premature mortalities yr-1 in Africa. BB contributes more ambient PM2.5-related premature mortalities per year (63%) than residential solid-fuel burning (29%) and trash burning (8%). Open BB in Central Africa leads to the largest number of PM2.5-attributed mortalities inside the region, while trash burning in North Africa and residential solid-fuel burning in West Africa contribute the most regional mortalities for each source. Overall, Africa has a unique ambient air pollution profile because natural sources, such as windblown dust and BB, contribute strongly to ambient PM2.5 levels and PM2.5-related mortality. Air pollution policies may need to focus on taking preventative measures to avoid exposure to ambient PM2.5 from these less-controllable sources.

6.
Geohealth ; 6(12): e2022GH000672, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36467256

RESUMEN

We investigate socioeconomic disparities in air quality at public schools in the contiguous US using high resolution estimates of fine particulate matter (PM2.5) and nitrogen dioxide (NO2) concentrations. We find that schools with higher proportions of people of color (POC) and students eligible for the federal free or reduced lunch program, a proxy for poverty level, are associated with higher pollutant concentrations. For example, we find that the median annual NO2 concentration for White students, nationally, was 7.7 ppbv, compared to 9.2 ppbv for Black and African American students. Statewide and regional disparities in pollutant concentrations across racial, ethnic, and poverty groups are consistent with nationwide results, where elevated NO2 concentrations were associated with schools with higher proportions of POC and higher levels of poverty. Similar, though smaller, differences were found in PM2.5 across racial and ethnic groups in most states. Racial, ethnic, and economic segregation across the rural-urban divide is likely an important factor in pollution disparities at US public schools. We identify distinct regional patterns of disparities, highlighting differences between California, New York, and Florida. Finally, we highlight that disparities exist not only across urban and non-urban lines but also within urban environments.

7.
J Air Waste Manag Assoc ; 72(11): 1201-1218, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35605169

RESUMEN

Carlsbad Caverns National Park in southeastern New Mexico is adjacent to the Permian Basin, one of the most productive oil and gas regions in the country. The 2019 Carlsbad Caverns Air Quality Study (CarCavAQS) was designed to examine the influence of regional sources, including urban emissions, oil and gas development, wildfires, and soil dust on air quality in the park. Field measurements of aerosols, trace gases, and deposition were conducted from 25 July through 5 September 2019. Here, we focus on observations of fine particles and key trace gas precursors to understand the important contributing species and their sources and associated impacts on haze. Key gases measured included aerosol precursors, nitric acid and ammonia, and oil and gas tracer, methane. High-time resolution (6-min) PM2.5 mass ranged up to 31.8 µg m-3, with an average of 7.67 µg m-3. The main inorganic ion contributors were sulfate (avg 1.3 µg m-3), ammonium (0.30 µg m-3), calcium (Ca2+) (0.22 µg m-3), nitrate (0.16 µg m-3), and sodium (0.057 µg m-3). The WSOC concentration averaged 1.2 µg C m-3. Sharp spikes were observed in Ca2+, consistent with local dust generation and transport. Ion balance analysis and abundant nitric acid suggest PM2.5 nitrate often reflected reaction between nitric acid and sea salt, forming sodium nitrate, and between nitric acid and soil dust containing calcium carbonate, forming calcium nitrate. Sulfate and soil dust are the major contributors to modeled light extinction in the 24-hr average daily IMPROVE observations. Higher time resolution data revealed a maximum 1-hr extinction value of 90 Mm-1 (excluding coarse aerosol) and included periods of significant light extinction from BC as well as sulfate and soil dust. Residence time analysis indicated enrichment of sulfate, BC, and methane during periods of transport from the southeast, the direction of greatest abundance of oil and gas development.Implications: Rapid development of U.S. oil and gas resources raises concerns about potential impacts on air quality in National Parks. Measurements in Carlsbad Caverns National Park provide new insight into impacts of unconventional oil and gas development and other sources on visual air quality in the park. Major contributors to visibility impairment include sulfate, soil dust (often reacted with nitric acid), and black carbon. The worst periods of visibility and highest concentrations of many aerosol components were observed during transport from the southeast, a region of dense Permian Basin oil and gas development.


Asunto(s)
Contaminantes Atmosféricos , Nitratos , Nitratos/análisis , Contaminantes Atmosféricos/análisis , Parques Recreativos , Monitoreo del Ambiente , Cuevas , Ácido Nítrico/análisis , Aerosoles/análisis , Polvo/análisis , Gases/análisis , Óxidos de Nitrógeno/análisis , Sulfatos/análisis , Suelo , Metano/análisis , Material Particulado/análisis
8.
Microbiol Spectr ; 10(2): e0041022, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35384690

RESUMEN

Multiwalled carbon nanotubes (MWCNTs) regularly enter aquatic environments due to their ubiquity in consumer products and engineering applications. However, the effects of MWCNT pollution on the environmental microbiome are poorly understood. Here, we evaluated whether these carbon nanoparticles can elevate the spread of antimicrobial resistance by promoting bacterial plasmid transfer, which has previously been observed for copper nanomaterials with antimicrobial properties as well as for microplastics. Through a combination of experimental liquid mating assays between Pseudomonas putida donor and recipient strains with plasmid pKJK5::gfpmut3b and mathematical modeling, we here demonstrate that the presence of MWCNTs leads to increased plasmid transfer rates in a concentration-dependent manner. The percentage of transconjugants per recipient significantly increased from 0.21 ± 0.04% in absence to 0.41 ± 0.09% at 10 mg L-1 MWCNTs. Similar trends were observed when using an Escherichia coli donor hosting plasmid pB10. The identified mechanism underlying the observed dynamics was the agglomeration of MWCNTs. A significantly increased number of particles with >6 µm diameter was detected in the presence of MWCNTs, which can in turn provide novel surfaces for bacterial interactions between donor and recipient cells after colonization. Fluorescence microscopy confirmed that MWCNT agglomerates were indeed covered in biofilms that contained donor bacteria as well as elevated numbers of green fluorescent transconjugant cells containing the plasmid. Consequently, MWCNTs provide bacteria with novel surfaces for intense cell-to-cell interactions in biofilms and can promote bacterial plasmid transfer, hence potentially elevating the spread of antimicrobial resistance. IMPORTANCE In recent decades, the use of carbon nanoparticles, especially multiwalled carbon nanotubes (MWCNTs), in a variety of products and engineering applications has been growing exponentially. As a result, MWCNT pollution into environmental compartments has been increasing. We here demonstrate that the exposure to MWCNTs can affect bacterial plasmid transfer rates in aquatic environments, an important process connected to the spread of antimicrobial resistance genes in microbial communities. This is mechanistically explained by the ability of MWCNTs to form bigger agglomerates, hence providing novel surfaces for bacterial interactions. Consequently, increasing pollution with MWCNTs has the potential to elevate the ongoing spread of antimicrobial resistance, a major threat to human health in the 21st century.


Asunto(s)
Nanotubos de Carbono , Antibacterianos/farmacología , Bacterias/genética , Escherichia coli/genética , Humanos , Plásmidos/genética , Plásticos/farmacología
10.
Environ Sci Technol ; 56(4): 2236-2247, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35076215

RESUMEN

Quantifying ammonia (NH3) to methane (CH4) enhancement ratios from agricultural sources is important for understanding air pollution and nitrogen deposition. The northeastern Colorado Front Range is home to concentrated animal feeding operations (CAFOs) that produce large emissions of NH3 and CH4. Isolating enhancements of NH3 and CH4 in this region due to agriculture is complicated because CAFOs are often located within regions of oil and natural gas (O&NG) extraction that are a major source of CH4 and other alkanes. Here, we utilize a small research aircraft to collect in situ 1 Hz measurements of gas-phase NH3, CH4, and ethane (C2H6) downwind of CAFOs during three flights conducted in November 2019. Enhancements in NH3 and CH4 are distinguishable up to 10 km downwind of CAFOs with the most concentrated portions of the plumes typically below 0.25 km AGL. We demonstrate that NH3 and C2H6 can be jointly used to separate near-source enhancements in CH4 from agriculture and O&NG. Molar enhancement ratios of NH3 to CH4 are quantified for individual CAFOs in this region, and they range from 0.8 to 2.7 ppbv ppbv-1. A multivariate regression model produces enhancement ratios and quantitative regional source contributions that are consistent with prior studies.


Asunto(s)
Contaminantes Atmosféricos , Metano , Agricultura , Contaminantes Atmosféricos/análisis , Aeronaves , Amoníaco , Animales , Colorado , Metano/análisis , Gas Natural
11.
Environ Res ; 207: 112197, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-34699758

RESUMEN

Exposure to air pollution, including criteria pollutants such as fine particulate matter (PM2.5) and ozone (O3), has been associated with morbidity and mortality in mammals. As a genetically homogenous population that is closely monitored for health, dairy cattle present a unique opportunity to assess the association between changes in air pollution and mammalian health. Milk yield decreases in the summer if temperature and humidity, measured by the Temperature Humidity Index (THI). As O3 levels increase with warmer temperatures, and summer PM2.5 may increase with wildfire smoke, dairy cows may serve as a useful sentinel species to evaluate subacute markers of inflammation and metabolic output and ambient pollution. Over two years, we assessed summertime O3 and PM2.5 concentrations from local US EPA air quality monitors into an auto-regressive mixed model of the association between THI and daily milk production data and bulk tank somatic cell count (SCC). In unadjusted models, a 10 unit increase THI was associated with 28,700 cells/mL (95% CI: 17,700, 39,690) increase in SCC. After controlling for ambient air pollutants, THI was associated with a 14,500 SCC increase (95% CI: 3,400, 25,680), a 48% decrease in effect compared to the crude model. Further, in fully adjusted models, PM2.5 was associated with a 105,500 cells/mL (95% CI: 90,030, 121,050) increase in SCC. Similar results were found for milk production. Results were amplified when high PM2.5 days (95th percentile of observed values) associated with wildfire smoke were removed from the analyses. Our results support the hypothesis that PM2.5 confounds the relationships between THI and milk yield and somatic cell count. The results of this study can be used to inform strategies for intervention to mitigate these impacts at the dairy level and potentially contribute to a model where production animals can act as air quality sentinels.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Animales , Canarios , Bovinos , Recuento de Células/veterinaria , Femenino , Mamíferos , Leche/química , Material Particulado/análisis , Material Particulado/toxicidad
13.
Geohealth ; 5(9): e2021GH000457, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34504989

RESUMEN

As anthropogenic emissions continue to decline and emissions from landscape (wild, prescribed, and agricultural) fires increase across the coming century, the relative importance of landscape-fire smoke on air quality and health in the United States (US) will increase. Landscape fires are a large source of fine particulate matter (PM2.5), which has known negative impacts on human health. The seasonal and spatial distribution, particle composition, and co-emitted species in landscape-fire emissions are different from anthropogenic sources of PM2.5. The implications of landscape-fire emissions on the sub-national temporal and spatial distribution of health events and the relative health importance of specific pollutants within smoke are not well understood. We use a health impact assessment with observation-based smoke PM2.5 to determine the sub-national distribution of mortality and the sub-national and sub-annual distribution of asthma morbidity attributable to US smoke PM2.5 from 2006 to 2018. We estimate disability-adjusted life years (DALYs) for PM2.5 and 18 gas-phase hazardous air pollutants (HAPs) in smoke. Although the majority of large landscape fires occur in the western US, we find the majority of mortality (74%) and asthma morbidity (on average 75% across 2006-2018) attributable to smoke PM2.5 occurs outside the West, due to higher population density in the East. Across the US, smoke-attributable asthma morbidity predominantly occurs in spring and summer. The number of DALYs associated with smoke PM2.5 is approximately three orders of magnitude higher than DALYs associated with gas-phase smoke HAPs. Our results indicate awareness and mitigation of landscape-fire smoke exposure is important across the US.

14.
Environ Sci Technol ; 55(17): 11795-11804, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34488352

RESUMEN

Wildland firefighters are exposed to smoke-containing particulate matter (PM) and volatile organic compounds (VOCs) while suppressing wildfires. From 2015 to 2017, the U.S. Forest Service conducted a field study collecting breathing zone measurements of PM4 (particulate matter with aerodynamic diameter ≤4 µm) on wildland firefighters from different crew types and while performing various fire suppression tasks on wildfires. Emission ratios of VOC (parts per billion; ppb): PM1 (particulate matter with aerodynamic diameter ≤1 µm; mg/m3) were calculated using data from a separate field study conducted in summer 2018, the Western Wildfire Experiment for Cloud Chemistry, Aerosol Absorption, and Nitrogen (WE-CAN) Campaign. These emission ratios were used to estimate wildland firefighter exposure to acrolein, benzene, and formaldehyde. Results of this field sampling campaign reported that exposure to PM4 and VOC varied across wildland firefighter crew type and job task. Type 1 crews had greater exposures to both PM4 and VOCs than type 2 or type 2 initial attack crews, and wildland firefighters performing direct suppression had statistically higher exposures than those performing staging and other tasks (mean differences = 0.82 and 0.75 mg/m3; 95% confidence intervals = 0.38-1.26 and 0.41-1.08 mg/m3, respectively). Of the 81 personal exposure samples collected, 19% of measured PM4 exposures exceeded the recommended National Wildland Fire Coordinating Group occupational exposure limit (0.7 mg/m3). Wildland fire management should continue to find strategies to reduce smoke exposures for wildland firefighters.


Asunto(s)
Bomberos , Incendios , Exposición Profesional , Compuestos Orgánicos Volátiles , Humanos , Material Particulado/análisis , Humo/análisis , Compuestos Orgánicos Volátiles/análisis
15.
Geohealth ; 5(5): e2021GH000385, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33977181

RESUMEN

Wildfire smoke is a growing public health concern in the United States. Numerous studies have documented associations between ambient smoke exposure and severe patient outcomes for single-fire seasons or limited geographic regions. However, there are few national-scale health studies of wildfire smoke in the United States, few studies investigating Intensive Care Unit (ICU) admissions as an outcome, and few specifically framed around hospital operations. This study retrospectively examined the associations between ambient wildfire-related PM2.5 at a hospital ZIP code with total hospital ICU admissions using a national-scale hospitalization data set. Wildfire smoke was characterized using a combination of kriged PM2.5 monitor observations and satellite-derived plume polygons from National Oceanic and Atmospheric Administration's Hazard Mapping System. ICU admissions data were acquired from Premier, Inc. and encompass 15%-20% of all U.S. ICU admissions during the study period. Associations were estimated using a distributed-lag conditional Poisson model under a time-stratified case-crossover design. We found that a 10 µg/m3 increase in daily wildfire PM2.5 was associated with a 2.7% (95% CI: 1.3, 4.1; p = 0.00018) increase in ICU admissions 5 days later. Under stratification, positive associations were found among patients aged 0-20 and 60+, patients living in the Midwest Census Region, patients admitted in the years 2013-2015, and non-Black patients, though other results were mixed. Following a simulated severe 7-day 120 µg/m3 smoke event, our results predict ICU bed utilization peaking at 131% (95% CI: 43, 239; p < 10-5) over baseline. Our work suggests that hospitals may need to preposition vital critical care resources when severe smoke events are forecast.

16.
Geohealth ; 5(3): e2020GH000330, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35281479

RESUMEN

We estimated cardiopulmonary morbidity and mortality associated with wildfire smoke (WFS) fine particulate matter (PM2.5) in the Front Range of Colorado from 2010 to 2015. To estimate WFS PM2.5, we developed a daily kriged PM2.5 surface at a 15  × 15 km resolution based on the Environmental Protection Agency Air Quality System monitors for the western United States; we subtracted out local seasonal-average PM2.5 of nonsmoky days, identified using satellite-based smoke plume estimates, from the local daily estimated PM2.5 if smoke was identified by National Oceanic and Atmospheric Administration's Hazard Mapping System. We implemented time-stratified case-crossover analyses to estimate the effect of a 10 µg/m3 increase in WFS PM2.5 with cardiopulmonary hospitalizations and deaths using single and distributed lag models for lags 0-5 and distinct annual impacts based on local and long-range smoke during 2012, and long-range transport of smoke in 2015. A 10 µg/m3 increase in WFS was associated with all respiratory, asthma, and chronic obstructive pulmonary disease hospitalizations for lag day 3 and hospitalizations for ischemic heart disease at lag days 2 and 3. Cardiac arrest deaths were associated with WFS PM2.5 at lag day 0. For 2012 local wildfires, asthma hospitalizations had an inverse association with WFS PM2.5 (OR: 0.716, 95% CI: 0.517-0.993), but a positive association with WFS PM2.5 during the 2015 long-range transport event (OR: 1.455, 95% CI: 1.093-1.939). Cardiovascular mortality was associated with the 2012 long-range transport event (OR: 1.478, 95% CI: 1.124-1.944).

17.
Chemosphere ; 263: 128040, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33297056

RESUMEN

The interaction of microplastics with freshwater biota and their interaction with other stressors is still not very well understood. Therefore, we investigated the ingestion, excretion and toxicity of microplastics in the freshwater gastropod Lymnaea stagnalis. MP ingestion was analyzed as tissues levels in L. stagnalis after 6-96 h of exposure to 5-90 µm spherical polystyrene (PS) microplastics. To understand the excretion, tissue levels were determined after 24 h of exposure followed by a 12 h-7 d depuration period. To assess the toxicity, snails were exposed for 28 d to irregular PS microplastics (<63 µm, 6.4-100,000 particles mL-1), both alone and in combination with copper as additional stressor. To compare the toxicity of natural and synthetic particles, we also included diatomite particles. Microplastics ingestion and excretion significantly depended on the particle size and the exposure/depuration duration. An exposure to irregular PS had no effect on survival, reproduction, energy reserves and oxidative stress. However, we observed slight effects on immune cell phagocytosis. Exposure to microplastics did not exacerbate the reproductive toxicity of copper. In addition, there was no pronounced difference between the effects of microplastics and diatomite. The tolerance towards microplastics may originate from an adaptation of L. stagnalis to particle-rich environments or a general stress resilience. In conclusion, despite high uptake rates, PS fragments do not appear to be a relevant stressor for stress tolerant freshwater gastropods considering current environmental levels of microplastics.


Asunto(s)
Lymnaea , Contaminantes Químicos del Agua , Animales , Cobre/toxicidad , Ingestión de Alimentos , Agua Dulce , Microplásticos , Plásticos/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
18.
Anal Bioanal Chem ; 413(1): 103-115, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33164152

RESUMEN

In this study, we compare combustion ion chromatography (CIC) and high resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) with respect to their applicability for determining organically bound fluorine sum parameters. Extractable (EOF) and adsorbable (AOF) organically bound fluorine as well as total fluorine (TF) were measured in samples from river Spree in Berlin, Germany, to reveal the advantages and disadvantages of the two techniques used as well as the two established fluorine sum parameters AOF and EOF. TF concentrations determined via HR-CS-GFMAS and CIC were comparable between 148 and 270 µg/L. On average, AOF concentrations were higher than EOF concentrations, with AOF making up 0.14-0.81% of TF (determined using CIC) and EOF 0.04-0.28% of TF (determined using HR-CS-GFMAS). The results obtained by the two independent methods were in good agreement. It turned out that HR-CS-GFMAS is a more sensitive and precise method for fluorine analysis compared to CIC. EOF and AOF are comparable tools in risk evaluation for the emerging pollutants per- and polyfluorinated alkyl substances; however, EOF is much faster to conduct. Graphical abstract.

19.
Proc Natl Acad Sci U S A ; 117(47): 29469-29477, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33148807

RESUMEN

The evolution of organic aerosol (OA) and brown carbon (BrC) in wildfire plumes, including the relative contributions of primary versus secondary sources, has been uncertain in part because of limited knowledge of the precursor emissions and the chemical environment of smoke plumes. We made airborne measurements of a suite of reactive trace gases, particle composition, and optical properties in fresh western US wildfire smoke in July through August 2018. We use these observations to quantify primary versus secondary sources of biomass-burning OA (BBPOA versus BBSOA) and BrC in wildfire plumes. When a daytime wildfire plume dilutes by a factor of 5 to 10, we estimate that up to one-third of the primary OA has evaporated and subsequently reacted to form BBSOA with near unit yield. The reactions of measured BBSOA precursors contribute only 13 ± 3% of the total BBSOA source, with evaporated BBPOA comprising the rest. We find that oxidation of phenolic compounds contributes the majority of BBSOA from emitted vapors. The corresponding particulate nitrophenolic compounds are estimated to explain 29 ± 15% of average BrC light absorption at 405 nm (BrC Abs405) measured in the first few hours of plume evolution, despite accounting for just 4 ± 2% of average OA mass. These measurements provide quantitative constraints on the role of dilution-driven evaporation of OA and subsequent radical-driven oxidation on the fate of biomass-burning OA and BrC in daytime wildfire plumes and point to the need to understand how processing of nighttime emissions differs.


Asunto(s)
Contaminantes Atmosféricos/química , Carbono/análisis , Humo , Incendios Forestales , Aerosoles , Monitoreo del Ambiente , Material Particulado , Estados Unidos
20.
Environ Sci Technol ; 54(19): 11838-11847, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32857515

RESUMEN

Wildfires have a significant adverse impact on air quality in the United States (US). To understand the potential health impacts of wildfire smoke, many epidemiology studies rely on concentrations of fine particulate matter (PM) as a smoke tracer. However, there are many gas-phase hazardous air pollutants (HAPs) identified by the Environmental Protection Agency (EPA) that are also present in wildfire smoke plumes. Using observations from the Western Wildfire Experiment for Cloud Chemistry, Aerosol Absorption, and Nitrogen (WE-CAN), a 2018 aircraft-based field campaign that measured HAPs and PM in western US wildfire smoke plumes, we identify the relationships between HAPs and associated health risks, PM, and smoke age. We find the ratios between acute, chronic noncancer, and chronic cancer HAPs health risk and PM in smoke decrease as a function of smoke age by up to 72% from fresh (<1 day of aging) to old (>3 days of aging) smoke. We show that acrolein, formaldehyde, benzene, and hydrogen cyanide are the dominant contributors to gas-phase HAPs risk in smoke plumes. Finally, we use ratios of HAPs to PM along with annual average smoke-specific PM to estimate current and potential future smoke HAPs risks.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Incendios Forestales , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Humo/efectos adversos , Humo/análisis , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...