Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Leuk Res Rep ; 21: 100398, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38192502

RESUMEN

T-cell lymphomas are aggressive neoplasms characterized by poor responses to current chemotherapeutic agents. Expression of the l-type amino acid transporter 1 (LAT 1, SLC7A5) allows for the expansion of healthy T-cell counterparts, and upregulation of LAT1 has been reported in precursor T-cell acute leukemia. Therefore, the expression of LAT1 was evaluated in a cohort of cutaneous and peripheral T-cell lymphomas. The findings demonstrated that LAT1 is upregulated in aggressive variants and absent in low-grade or indolent disease such as mycosis fungoides. In addition, upregulated LAT1 expression was seen in a large proportion of aggressive peripheral T-cell lymphomas, including peripheral T-cell lymphoma not otherwise specific (PTCL-NOS) and angioimmunoblastic T-cell lymphoma (AITL). The anti-tumor effects of two novel non-cleavable and bifunctional compounds, QBS10072S and QBS10096S, that combine a potent cytotoxic chemotherapeutic domain (tertiary N-bis(2-chloroethyl)amine) with the structural features of a selective LAT1 substrate (aromatic ß-amino acid) were tested in vitro and in vivo in T-cell lymphoma cell lines. The findings demonstrated decreased survival of T-cell lymphoma lines with both compounds. Overall, the results demonstrate that LAT1 is a valuable biomarker for aggressive T-cell lymphoma counterparts and QBS10072S and QBS10096S are successful therapeutic options for these aggressive diseases.

2.
Cureus ; 13(8): e17595, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34646647

RESUMEN

Introduction The standard treatment for glioblastoma (GBM) patients is surgical tumor resection, followed by radiation and chemotherapy with temozolomide (TMZ). Unfortunately, 60% of newly diagnosed GBM patients express high levels of the DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT) and are TMZ-resistant, and all patients eventually become refractory to treatment. The blood-brain barrier (BBB) is an obstacle to the delivery of chemotherapeutic agents to GBM, and BBB-permeable agents that are efficacious in TMZ-resistant and refractory patients are needed. The large amino acid transporter 1 (LAT1) is expressed on the BBB and in GBM and is detected at much lower levels in normal brain tissue. A LAT1-selective therapeutic would potentially target brain tumors while avoiding uptake by healthy tissue. Methods We report a novel chemical entity (QBS10072S) that combines a potent cytotoxic chemotherapeutic domain (tertiary N-bis(2-chloroethyl)amine) with the structural features of a selective LAT1 substrate and tested it against GBM models in vitro and in vivo. For in vitro studies, DNA damage was assessed with a gamma H2A.X antibody and cell viability was assessed by WST-1 assay and/or CellTiter-Glo assay. For in vivo studies, QBS10072S (with or without radiation) was tested in orthotopic glioblastoma xenograft models, using overall survival and tumor size (as measured by bioluminescence), as endpoints. Results QBS10072S is 50-fold more selective for LAT1 vs. LAT2 in transport assays and demonstrates significant growth suppression in vitro of LAT1-expressing GBM cell lines. Unlike TMZ, QBS10072S is cytotoxic to cells with both high and low levels of MGMT expression. In orthotopic GBM xenografts, QBS10072S treatment significantly delayed tumorigenesis and prolonged animal survival compared to the vehicle without adverse effects. Conclusion QBS10072S is a novel BBB-permeable chemotherapeutic agent with the potential to treat TMZ-resistant and recurrent GBM as monotherapy or in combination with radiation treatment.

3.
Mol Cancer Ther ; 20(11): 2110-2116, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34635566

RESUMEN

Development of metastases to central nervous system (CNS) is an increasing clinical issue following the diagnosis of advanced breast cancer. The propensity to metastasize to CNS varies by breast cancer subtype. Of the four breast cancer subtypes, triple-negative breast cancers (TNBC) have the highest rates of both parenchymal brain metastasis and leptomeningeal metastasis (LM). LM is rapidly fatal due to poor detection and limited therapeutic options. Therapy of TNBC brain metastasis and LM is challenged by multifocal brain metastasis and diffuse spread of LM, and must balance brain penetration, tumor cytotoxicity, and the avoidance of neurotoxicity. Thus, there is an urgent need for novel therapeutic options in TNBCs CNS metastasis. QBS10072S is a novel chemotherapeutic that leverages TNBC-specific defects in DNA repair and LAT1 (L-amino acid transporter type 1)-dependent transport into the brain. In our study, activity of QBS10072S was investigated in vitro with various cell lines including the human TNBC cell line MDA-MB-231 and its brain-tropic derivative MDA-MB-231-BR3. QBS10072S was preferentially toxic to TNBC cells. The efficacy of QBS10072S against brain metastasis and LM was tested using a model of brain metastasis based on the internal carotid injection of luciferase-expressing tumor cells into NuNu mice. The compound was well tolerated, delayed tumor growth and reduced leptomeningeal dissemination, resulting in significant extension of survival. Given that current treatments for LM are palliative with only few studies reporting a survival benefit, QBS10072S is planned to be investigated in clinical trials as a therapeutic for TNBC LM. SIGNIFICANCE: TNBC brain metastasis often involves dissemination into leptomeninges. Treatment options for TNBC leptomeningeal metastasis are limited and are mostly palliative. Our study demonstrates significant efficacy of the brain-penetrating agent QBS10072S against TNBC brain metastasis and leptomeningeal spread.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Humanos , Ratones , Metástasis de la Neoplasia
4.
Angew Chem Int Ed Engl ; 60(24): 13536-13541, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33768597

RESUMEN

Brasilicardin A (1) consists of an unusual anti/syn/anti-perhydrophenanthrene skeleton with a carbohydrate side chain and an amino acid moiety. It exhibits potent immunosuppressive activity, yet its mode of action differs from standard drugs that are currently in use. Further pre-clinical evaluation of this promising, biologically active natural product is hampered by restricted access to the ready material, as its synthesis requires both a low-yielding fermentation process using a pathogenic organism and an elaborate, multi-step total synthesis. Our semi-synthetic approach included a) the heterologous expression of the brasilicardin A gene cluster in different non-pathogenic bacterial strains producing brasilicardin A aglycone (5) in excellent yield and b) the chemical transformation of the aglycone 5 into the trifluoroacetic acid salt of brasilicardin A (1 a) via a short and straightforward five-steps synthetic route. Additionally, we report the first preclinical data for brasilicardin A.


Asunto(s)
Aminoglicósidos/metabolismo , Ingeniería Genética , Inmunosupresores/síntesis química , Transferasas Alquil y Aril/genética , Aminoglicósidos/síntesis química , Aminoglicósidos/química , Aminoglicósidos/farmacología , Animales , Productos Biológicos/síntesis química , Productos Biológicos/química , Productos Biológicos/metabolismo , Productos Biológicos/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Inmunosupresores/química , Inmunosupresores/metabolismo , Inmunosupresores/farmacología , Ratones , Plásmidos/genética , Plásmidos/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Terpenos/química
5.
Neuropsychopharmacology ; 39(4): 783-91, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24081303

RESUMEN

Alcoholism is one of the most prevalent neuropsychiatric diseases, having an enormous health and socioeconomic impact. Along with a few other medications, acamprosate (Campral-calcium-bis (N-acetylhomotaurinate)) is clinically used in many countries for relapse prevention. Although there is accumulated evidence suggesting that acamprosate interferes with the glutamate system, the molecular mode of action still remains undefined. Here we show that acamprosate does not interact with proposed glutamate receptor mechanisms. In particular, acamprosate does not interact with NMDA receptors or metabotropic glutamate receptor group I. In three different preclinical animal models of either excessive alcohol drinking, alcohol-seeking, or relapse-like drinking behavior, we demonstrate that N-acetylhomotaurinate by itself is not an active psychotropic molecule. Hence, the sodium salt of N-acetylhomotaurinate (i) is ineffective in alcohol-preferring rats to reduce operant responding for ethanol, (ii) is ineffective in alcohol-seeking rats in a cue-induced reinstatement paradigm, (iii) and is ineffective in rats with an alcohol deprivation effect. Surprisingly, calcium salts produce acamprosate-like effects in all three animal models. We conclude that calcium is the active moiety of acamprosate. Indeed, when translating these findings to the human situation, we found that patients with high plasma calcium levels due to acamprosate treatment showed better primary efficacy parameters such as time to relapse and cumulative abstinence. We conclude that N-acetylhomotaurinate is a biologically inactive molecule and that the effects of acamprosate described in more than 450 published original investigations and clinical trials and 1.5 million treated patients can possibly be attributed to calcium.


Asunto(s)
Disuasivos de Alcohol/uso terapéutico , Alcoholismo/tratamiento farmacológico , Alcoholismo/metabolismo , Calcio/metabolismo , Taurina/análogos & derivados , Acamprosato , Disuasivos de Alcohol/farmacología , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , GABAérgicos/farmacología , Humanos , Técnicas In Vitro , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Prevención Secundaria , Taurina/química , Taurina/farmacología , Taurina/uso terapéutico , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA