Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Thromb Haemost ; 22(4): 1056-1068, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38160724

RESUMEN

BACKGROUND: Blood clots are primarily composed of red blood cells (RBCs), platelets/thrombocytes, and fibrin. Despite the similarities observed between mammals and zebrafish, the composition of fish thrombi is not as well known. OBJECTIVES: To analyze the formation of zebrafish blood clots ex vivo and arterial and venous thrombi in vivo. METHODS: Transgenic zebrafish lines and laser-mediated endothelial injury were used to determine the relative ratio of RBCs and thrombocytes in clots. Scanning electron and confocal microscopy provided high-resolution images of the structure of adult and larval clots. Adult and larval thrombocyte spreading on fibrinogen was evaluated ex vivo. RESULTS: RBCs were present in arterial and venous thrombi, making up the majority of cells in both circulations. However, bloodless mutant fish demonstrated that fibrin clots can form in vivo in the absence of blood cells. Scanning electron and confocal microscopy showed that larval and adult zebrafish thrombi and mammalian thrombi look surprisingly similar externally and internally, even though the former have nucleated RBCs and thrombocytes. Although adult thrombocytes spread on fibrinogen, we found that larval cells do not fully activate without the addition of plasma from adult fish, suggesting a developmental deficiency of a plasma activating factor. Finally, mutants lacking αIIbß3 demonstrated that this integrin mediates thrombocyte spreading on fibrinogen. CONCLUSION: Our data showed strong conservation of arterial and venous and clot/thrombus formation across species, including developmental regulation of thrombocyte function. This correlation supports the possibility that mammals also do not absolutely require circulating cells to form fibrin clots in vivo.


Asunto(s)
Hemostáticos , Tromboembolia , Trombosis , Animales , Pez Cebra , Trombosis/genética , Plaquetas , Fibrina/química , Fibrinógeno/genética , Mamíferos
2.
Mol Cell ; 82(9): 1678-1690.e12, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35305312

RESUMEN

The functional consequence of N6-methyladenosine (m6A) RNA modification is mediated by "reader" proteins of the YTH family. YTH domain-containing 2 (YTHDC2) is essential for mammalian fertility, but its molecular function is poorly understood. Here, we identify U-rich motifs as binding sites of YTHDC2 on 3' UTRs of mouse testicular RNA targets. Although its YTH domain is an m6A-binder in vitro, the YTH point mutant mice are fertile. Significantly, the loss of its 3'→5' RNA helicase activity causes mouse infertility, with the catalytic-dead mutation being dominant negative. Biochemical studies reveal that the weak helicase activity of YTHDC2 is enhanced by its interaction with the 5'→3' exoribonuclease XRN1. Single-cell transcriptomics indicate that Ythdc2 mutant mitotic germ cells transition into meiosis but accumulate a transcriptome with mixed mitotic/meiotic identity that fail to progress further into meiosis. Finally, our demonstration that ythdc2 mutant zebrafish are infertile highlights its conserved role in animal germ cell development.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Exorribonucleasas/metabolismo , ARN Helicasas , Pez Cebra , Animales , Fertilidad/genética , Mamíferos/metabolismo , Meiosis , Ratones , ARN/genética , ARN Helicasas/genética , ARN Helicasas/metabolismo , Pez Cebra/genética
3.
Int J Mol Sci ; 22(2)2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-33440782

RESUMEN

Venous thrombosis occurs in patients with quantitative and qualitative fibrinogen disorders. Injury-induced thrombosis in zebrafish larvae has been used to model human coagulopathies. We aimed to determine whether zebrafish models of afibrinogenemia and dysfibrinogenemia have different thrombotic phenotypes. Laser injuries were used to induce venous thrombosis and the time-to-occlusion (TTO) and the binding and aggregation of fluorescent Tg(itga2b:EGFP) thrombocytes measured. The fga-/- larvae failed to support occlusive venous thrombosis and showed reduced thrombocyte binding and aggregation at injury sites. The fga+/- larvae were largely unaffected. When genome editing zebrafish to produce fibrinogen Aα R28C, equivalent to the human Aα R35C dysfibrinogenemia mutation, we detected in-frame skipping of exon 2 in the fga mRNA, thereby encoding AαΔ19-56. This mutation is similar to Fibrinogen Montpellier II which causes hypodysfibrinogenemia. Aα+/Δ19-56 fish had prolonged TTO and reduced thrombocyte activity, a dominant effect of the mutation. Finally, we used transgenic expression of fga R28C cDNA in fga knock-down or fga-/- mutants to model thrombosis in dysfibrinogenemia. Aα R28C expression had similar effects on TTO and thrombocyte activity as Aα+/Δ19-56. We conclude that thrombosis assays in larval zebrafish can distinguish between quantitative and qualitative fibrinogen disorder models and may assist in anticipating a thrombotic phenotype of novel fibrinogen mutations.


Asunto(s)
Biomarcadores , Plaquetas/metabolismo , Fibrinógeno/metabolismo , Trombosis de la Vena/sangre , Trombosis de la Vena/etiología , Animales , Secuencia de Bases , Coagulación Sanguínea , Modelos Animales de Enfermedad , Exones , Fibrinógeno/química , Fibrinógeno/genética , Edición Génica , Expresión Génica , Plásmidos/genética , Activación Plaquetaria , ARN Guía de Kinetoplastida , Eliminación de Secuencia , Trombosis de la Vena/diagnóstico , Pez Cebra
4.
Thromb Haemost ; 121(4): 409-421, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33124028

RESUMEN

MicroRNAs (miRNAs) are small noncoding RNAs modulating protein production. They are key players in regulation of cell function and are considered as biomarkers in several diseases. The identification of the proteins they regulate, and their impact on cell physiology, may delineate their role as diagnostic or prognostic markers and identify new therapeutic strategies. During the last 3 decades, development of a large panel of techniques has given rise to multiple models dedicated to the study of miRNAs. Since plasma samples are easily accessible, circulating miRNAs can be studied in clinical trials. To quantify miRNAs in numerous plasma samples, the choice of extraction and purification techniques, as well as normalization procedures, are important for comparisons of miRNA levels in populations and over time. Recent advances in bioinformatics provide tools to identify putative miRNAs targets that can then be validated with dedicated assays. In vitro and in vivo approaches aim to functionally validate candidate miRNAs from correlations and to understand their impact on cellular processes. This review describes the advantages and pitfalls of the available techniques for translational research to study miRNAs with a focus on their role in regulating platelet reactivity.


Asunto(s)
Plaquetas/metabolismo , Biología Computacional , MicroARNs/sangre , Activación Plaquetaria , Transcriptoma , Investigación Biomédica Traslacional , Animales , Animales Modificados Genéticamente , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , MicroARNs/genética , Modelos Animales , Activación Plaquetaria/genética , ARN Mensajero/sangre , ARN Mensajero/genética , Transducción de Señal
5.
Thromb Haemost ; 121(4): 433-448, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33302304

RESUMEN

Thrombosis is a leading cause of morbidity and mortality. Fibrinogen, the soluble substrate for fibrin-based clotting, has a central role in haemostasis and thrombosis and its plasma concentration correlates with cardiovascular disease event risk and a prothrombotic state in experimental models. We aimed to identify chemical entities capable of changing fibrinogen production and test their impact on experimental thrombosis. A total of 1,280 bioactive compounds were screened for their ability to alter fibrinogen production by hepatocyte-derived cancer cells and a selected panel was tested in zebrafish larvae. Anthralin and all-trans retinoic acid (RA) were identified as fibrinogen-lowering and fibrinogen-increasing moieties, respectively. In zebrafish larvae, anthralin prolonged laser-induced venous- occlusion times and reduced thrombocyte accumulation at injury sites. RA had opposite effects. Treatment with RA, a nuclear receptor ligand, increased fibrinogen mRNA levels. Using an antisense morpholino oligonucleotide to deplete zebrafish fibrinogen, we correlated a shortening of laser-induced venous thrombosis times with RA treatment and fibrinogen protein levels. Anthralin had little effect on fibrinogen mRNA in zebrafish larvae, despite leading to lower detectable fibrinogen. Therefore, we made a proteomic scan of anthralin-treated cells and larvae. A reduced representation of proteins linked to the canonical secretory pathway was detected, suggesting that anthralin affects protein secretion. In summary, we found that chemical modulation of fibrinogen levels correlates with measured effects on experimental venous thrombosis and could be investigated as a therapeutic avenue for thrombosis prevention.


Asunto(s)
Coagulación Sanguínea/efectos de los fármacos , Fibrinógeno/metabolismo , Fibrinolíticos/farmacología , Trombosis de la Vena/tratamiento farmacológico , Proteínas de Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Antralina/farmacología , Modelos Animales de Enfermedad , Fibrinógeno/genética , Células Hep G2 , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Integrina alfa2/genética , Integrina alfa2/metabolismo , Morfolinos/farmacología , Mutación , Oligonucleótidos Antisentido/farmacología , Proteómica , Bibliotecas de Moléculas Pequeñas , Tretinoina/farmacología , Trombosis de la Vena/genética , Trombosis de la Vena/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/genética
6.
Blood Adv ; 4(21): 5480-5491, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33166405

RESUMEN

Plasma fibrinogen molecules comprise 2 copies of Aα, Bß, and γ chains folded into a hexameric protein. A minor fibrinogen isoform with an extended Aα chain (AαE) is more abundant in newborn human blood than in adults. Larval zebrafish produce predominantly AαE-containing fibrinogen, but its functional significance is unclear. In 3-day-old zebrafish, when hemostasis is reliant on fibrinogen and erythrocyte-rich clotting but is largely thrombocyte-independent, we measured the time to occlusion (TTO) in a laser-induced venous thrombosis assay in 3 zebrafish strains (AB, TU, and AB × TL hybrids). AB larvae showed delayed TTO compared with the TU and AB × TL strains. Mating AB with TU or TL produced larvae with a TU-like TTO. In contrast to TU, AB larvae failed to produce fibrinogen AαE, due to a mutation in the AαE-specific coding region of fibrinogen α-chain gene (fga). We investigated whether the lack of AαE explained the delayed AB TTO. Transgenic expression of AαE, but not Aα, shortened the AB TTO to that of TU. AαE rescued venous occlusion in fibrinogen mutants or larvae with morpholino-targeted fibrinogen α-chain messenger RNA, but Aα was less effective. In 5-day-old larvae, circulating thrombocytes contribute to hemostasis, as visualized in Tg(itga2b:EGFP) transgenics. Laser-induced venous thrombocyte adhesion and aggregation is reduced in fibrinogen mutants, but transgenic expression of Aα or AαE restored similar thrombocyte accumulation at the injury site. Our data demonstrate a genetic modifier of venous thrombosis and a role for fibrinogen AαE in early developmental blood coagulation, and suggest a link between differentially expressed fibrinogen isoforms and the cell types available for clotting.


Asunto(s)
Fibrinógeno , Hemostáticos , Trombosis de la Vena , Animales , Fibrinógeno/genética , Hemostasis , Pez Cebra
7.
Platelets ; 31(6): 746-755, 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-32529909

RESUMEN

Circulating microRNA (miRNA) expression profiles correlate with platelet reactivity. MiR-126 is a promising candidates in this regard. We generated a transgenic zebrafish line with thrombocyte-specific overexpression of miR-126. Laser injury of the posterior cardinal vein of 5 day-old larvae was performed with or without antithrombotic pre-treatment. Platelet-like structures (PLS) derived from human megakaryocytes transfected with miR-126 were also evaluated for procoagulant activity. Finally, we studied the correlation between miR-126 level and thrombin generation markers in a cohort of stable cardiovascular patients. Control zebrafish developed small thrombocyte-rich thrombi at the site of vessel injury, without vessel occlusion. The miR-126 transgenic line developed an occluding thrombus in 75% (95% CI: 51-91%) of larvae. Pre-treatment with the direct thrombin inhibitor argatroban, but not aspirin, prevented vessel occlusion in the transgenic line (0% occlusion, 95%CI: 0-18%). Upon activation, human PLS showed an increased procoagulant profile after miR-126 transfection compared to control. Finally, the plasma levels of miR-126, but not a control platelet-derived miRNA, correlated with markers of in vivo thrombin generation in a cohort of 185 cardiovascular patients. Our results from three complementary approaches support a key role for miR-126 in platelet-supported thrombin generation and open new avenues in the tailoring of antithrombotic treatment.


Asunto(s)
Plaquetas/metabolismo , MicroARNs/sangre , Trombina/metabolismo , Animales , Humanos , MicroARNs/genética , Trombina/genética , Pez Cebra
8.
Haematologica ; 105(2): 284-296, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31949010

RESUMEN

Fibrinogen is an abundant protein synthesized in the liver, present in human blood plasma at concentrations ranging from 1.5-4 g/L in healthy individuals with a normal half-life of 3-5 days. With fibrin, produced by thrombin-mediated cleavage, fibrinogen plays important roles in many physiological processes. Indeed, the formation of a stable blood clot, containing polymerized and cross-linked fibrin, is crucial to prevent blood loss and drive wound healing upon vascular injury. A balance between clotting, notably the conversion of fibrinogen to fibrin, and fibrinolysis, the proteolytic degradation of the fibrin mesh, is essential. Disruption of this equilibrium can cause disease in distinct manners. While some pathological conditions are the consequence of altered levels of fibrinogen, others are related to structural properties of the molecule. The source of fibrinogen expression and the localization of fibrin(ogen) protein also have clinical implications. Low levels of fibrinogen expression have been detected in extra-hepatic tissues, including carcinomas, potentially contributing to disease. Fibrin(ogen) deposits at aberrant sites including the central nervous system or kidney, can also be pathological. In this review, we discuss disorders in which fibrinogen and fibrin are implicated, highlighting mechanisms that may contribute to disease.


Asunto(s)
Fibrina , Fibrinógeno , Humanos , Trombina
9.
Am J Hum Genet ; 102(1): 116-132, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29290337

RESUMEN

Whole-exome and targeted sequencing of 13 individuals from 10 unrelated families with overlapping clinical manifestations identified loss-of-function and missense variants in KIAA1109 allowing delineation of an autosomal-recessive multi-system syndrome, which we suggest to name Alkuraya-Kucinskas syndrome (MIM 617822). Shared phenotypic features representing the cardinal characteristics of this syndrome combine brain atrophy with clubfoot and arthrogryposis. Affected individuals present with cerebral parenchymal underdevelopment, ranging from major cerebral parenchymal thinning with lissencephalic aspect to moderate parenchymal rarefaction, severe to mild ventriculomegaly, cerebellar hypoplasia with brainstem dysgenesis, and cardiac and ophthalmologic anomalies, such as microphthalmia and cataract. Severe loss-of-function cases were incompatible with life, whereas those individuals with milder missense variants presented with severe global developmental delay, syndactyly of 2nd and 3rd toes, and severe muscle hypotonia resulting in incapacity to stand without support. Consistent with a causative role for KIAA1109 loss-of-function/hypomorphic variants in this syndrome, knockdowns of the zebrafish orthologous gene resulted in embryos with hydrocephaly and abnormally curved notochords and overall body shape, whereas published knockouts of the fruit fly and mouse orthologous genes resulted in lethality or severe neurological defects reminiscent of the probands' features.


Asunto(s)
Artrogriposis/genética , Encéfalo/embriología , Mutación/genética , Proteínas/genética , Adolescente , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Niño , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Lactante , Recién Nacido , Imagen por Resonancia Magnética , Masculino , Linaje , Pez Cebra , Proteínas de Pez Cebra/genética
10.
Hum Mutat ; 39(2): 281-291, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29193635

RESUMEN

We report five individuals with loss-of-function of the X-linked AMMECR1: a girl with a balanced X-autosome translocation and inactivation of the normal X-chromosome; two boys with maternally inherited and de novo nonsense variants; and two half-brothers with maternally inherited microdeletion variants. They present with short stature, cardiac and skeletal abnormalities, and hearing loss. Variants of unknown significance in AMMECR1 in four male patients from two families with partially overlapping phenotypes were previously reported. AMMECR1 is coexpressed with genes implicated in cell cycle regulation, five of which were previously associated with growth and bone alterations. Our knockdown of the zebrafish orthologous gene resulted in phenotypes reminiscent of patients' features. The increased transcript and encoded protein levels of AMMECR1L, an AMMECR1 paralog, in the t(X;9) patient's cells indicate a possible partial compensatory mechanism. AMMECR1 and AMMECR1L proteins dimerize and localize to the nucleus as suggested by their nucleic acid-binding RAGNYA folds. Our results suggest that AMMECR1 is potentially involved in cell cycle control and linked to a new syndrome with growth, bone, heart, and kidney alterations with or without elliptocytosis.


Asunto(s)
Huesos/fisiología , Corazón/fisiología , Proteínas/genética , Animales , Western Blotting , Huesos/metabolismo , Ciclo Celular/genética , Ciclo Celular/fisiología , Línea Celular , Exoma/genética , Femenino , Células HeLa , Humanos , Masculino , Secuenciación Completa del Genoma , Pez Cebra
11.
Nat Commun ; 8(1): 1358, 2017 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-29116076

RESUMEN

The identification of genetic variants affecting gene expression, namely expression quantitative trait loci (eQTLs), has contributed to the understanding of mechanisms underlying human traits and diseases. The majority of these variants map in non-coding regulatory regions of the genome and their identification remains challenging. Here, we use natural genetic variation and CAGE transcriptomes from 154 EBV-transformed lymphoblastoid cell lines, derived from unrelated individuals, to map 5376 and 110 regulatory variants associated with promoter usage (puQTLs) and enhancer activity (eaQTLs), respectively. We characterize five categories of genes associated with puQTLs, distinguishing single from multi-promoter genes. Among multi-promoter genes, we find puQTL effects either specific to a single promoter or to multiple promoters with variable effect orientations. Regulatory variants associated with opposite effects on different mRNA isoforms suggest compensatory mechanisms occurring between alternative promoters. Our analyses identify differential promoter usage and modulation of enhancer activity as molecular mechanisms underlying eQTLs related to regulatory elements.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Variación Genética , Regiones Promotoras Genéticas , Línea Celular Transformada , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Herpesvirus Humano 4/patogenicidad , Humanos , Sitios de Carácter Cuantitativo , Transcriptoma
12.
Methods Mol Biol ; 1543: 111-126, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28349423

RESUMEN

Among the most significant findings of the post-genomic era, the discovery of pervasive transcription of mammalian genomes has tremendously modified our understanding of the genome output seen as RNA molecules. The increased focus on non-protein-coding genomic regions together with concomitant technological innovations has led to rapid discovery of numerous noncoding transcripts (ncRNAs). Biological relevance and functional roles of the vast majority of these ncRNAs remain largely unknown.The cap analysis of gene expression (CAGE) technology allows accurate transcript detection and quantification without relying on preexisting transcript models. In combination with complementary data sets, generated using other technologies, it has been shown as an efficient approach for exploring transcriptome complexity.Here, we describe the use of CAGE for the identification of novel noncoding transcripts in mammalian cells providing detailed information for basic data processing and advanced bioinformatics analyses.


Asunto(s)
Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Caperuzas de ARN , Transcriptoma , Biblioteca de Genes , Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo/métodos , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Regiones Promotoras Genéticas , Reproducibilidad de los Resultados , Transcripción Genética
13.
Oncotarget ; 8(64): 108195-108212, 2017 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-29296234

RESUMEN

The limitation of targeting VEGF/VEGFR2 signalling to stop angiogenesis in cancer therapy has been blamed on re-activation of alternative receptor tyrosine kinases by compensatory angiogenic factors. Targeting MAPK and PI3K signaling pathways in endothelial cells may be an alternative or complementary approach. Herein we aimed to evaluate the antitumor and antiangiogenic potential of a novel pyrazolyl-urea kinase inhibitor, GeGe3, and to identify its kinase targets. We found GeGe3 to inhibit the proliferation of HUVEC and endothelial tube formation. GeGe3 impaired inter-segmental angiogenesis during development of zebrafish embryos. In mice, GeGe3 blocked angiogenesis and tumor growth in transplanted subcutaneous Lewis Lung Carcinomas. Screening for GeGe3-targeted kinases revealed Aurora B, Aurora C, NEK10, polo-like kinase (PLK)2, PLK3, DMPK1 and CAMK1 as candidate targets. Biochemical analysis of these kinases showed DMPK1 regulation upon VEGF challenge. Investigation of the role of DMPK1 in endothelial cells revealed DMPK1 as a novel mediator of angiogenesis that controls the activation of MAPK signaling, proliferation and migration. GeGe3 alters angiogenesis by targeting DMPK in tumor endothelial cells and pericytes. The pyrazolyl-urea GeGe3, a novel blocker of MAPK and PI3K pathways, strongly inhibits physiological and tumor angiogenesis. We also report GeGe3-targeted kinase DMPK as a novel mediator of angiogenesis.

14.
PLoS One ; 11(12): e0167588, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27973546

RESUMEN

Expression of the tissue-type plasminogen activator gene (t-PA; gene name PLAT) is regulated, in part, by epigenetic mechanisms. We investigated the relationship between PLAT methylation and PLAT expression in five primary human cell types and six transformed cell lines. CpG methylation was analyzed in the proximal PLAT gene promoter and near the multihormone responsive enhancer (MHRE) -7.3 kilobase pairs upstream of the PLAT transcriptional start site (TSS, -7.3 kb). In Bowes melanoma cells, the PLAT promoter and the MHRE were fully unmethylated and t-PA secretion was extremely high. In other cell types the region from -647 to -366 was fully methylated, whereas an unmethylated stretch of DNA from -121 to +94 was required but not sufficient for detectable t-PA mRNA and t-PA secretion. DNA methylation near the MHRE was not correlated with t-PA secretion. Specific methylation of the PLAT promoter region -151 to +151, inserted into a firefly luciferase reporter gene, abolished reporter gene activity. The region -121 to + 94 contains two well-described regulatory elements, a PMA-responsive element (CRE) near -106 and a GC-rich region containing an Sp1 binding site near +59. Methylation of double-stranded DNA oligonucleotides containing the CRE or the GC-rich region had little or no effect on transcription factor binding. Methylated CpGs may attract co-repressor complexes that contain histone deacetylases (HDAC). However, reporter gene activity of methylated plasmids was not restored by the HDAC inhibitor trichostatin. In conclusion, efficient PLAT gene expression requires a short stretch of unmethylated CpG sites in the proximal promoter.


Asunto(s)
Metilación de ADN/genética , Regiones Promotoras Genéticas/genética , Activador de Tejido Plasminógeno/genética , Sitios de Unión/genética , Línea Celular , Epigénesis Genética/genética , Células HeLa , Humanos , Secuencias Reguladoras de Ácidos Nucleicos/genética , Sitio de Iniciación de la Transcripción/fisiología , Transcripción Genética/genética
16.
Am J Hum Genet ; 99(3): 704-710, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27523599

RESUMEN

GNB5 encodes the G protein ß subunit 5 and is involved in inhibitory G protein signaling. Here, we report mutations in GNB5 that are associated with heart-rate disturbance, eye disease, intellectual disability, gastric problems, hypotonia, and seizures in nine individuals from six families. We observed an association between the nature of the variants and clinical severity; individuals with loss-of-function alleles had more severe symptoms, including substantial developmental delay, speech defects, severe hypotonia, pathological gastro-esophageal reflux, retinal disease, and sinus-node dysfunction, whereas related heterozygotes harboring missense variants presented with a clinically milder phenotype. Zebrafish gnb5 knockouts recapitulated the phenotypic spectrum of affected individuals, including cardiac, neurological, and ophthalmological abnormalities, supporting a direct role of GNB5 in the control of heart rate, hypotonia, and vision.


Asunto(s)
Bradicardia/genética , Bradicardia/fisiopatología , Discapacidades del Desarrollo/genética , Subunidades beta de la Proteína de Unión al GTP/genética , Genes Recesivos/genética , Mutación/genética , Nodo Sinoatrial/fisiopatología , Adolescente , Animales , Niño , Discapacidades del Desarrollo/fisiopatología , Femenino , Subunidades beta de la Proteína de Unión al GTP/deficiencia , Reflujo Gastroesofágico/genética , Reflujo Gastroesofágico/fisiopatología , Eliminación de Gen , Frecuencia Cardíaca/genética , Heterocigoto , Humanos , Masculino , Hipotonía Muscular/genética , Mutación Missense/genética , Linaje , Fenotipo , Enfermedades de la Retina/genética , Enfermedades de la Retina/fisiopatología , Convulsiones/genética , Síndrome , Adulto Joven , Pez Cebra/genética , Pez Cebra/fisiología , Proteínas de Pez Cebra
17.
PLoS One ; 11(7): e0159679, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27442505

RESUMEN

Atherosclerosis, caused in part by monocytes in plaques, continues to be a disease that afflicts the modern world. Whilst significant steps have been made in treating this chronic inflammatory disease, questions remain on how to prevent monocyte and macrophage accumulation in atherosclerotic plaques. Junctional Adhesion Molecule C (JAM-C) expressed by vascular endothelium directs monocyte transendothelial migration in a unidirectional manner leading to increased inflammation. Here we show that interfering with JAM-C allows reverse-transendothelial migration of monocyte-derived cells, opening the way back out of the inflamed environment. To study the role of JAM-C in plaque regression we used a mouse model of atherosclerosis, and tested the impact of vascular JAM-C expression levels on monocyte reverse transendothelial migration using human cells. Studies in-vitro under inflammatory conditions revealed that overexpression or gene silencing of JAM-C in human endothelium exposed to flow resulted in higher rates of monocyte reverse-transendothelial migration, similar to antibody blockade. We then transplanted atherosclerotic, plaque-containing aortic arches from hyperlipidemic ApoE-/- mice into wild-type normolipidemic recipient mice. JAM-C blockade in the recipients induced greater emigration of monocyte-derived cells and further diminished the size of atherosclerotic plaques. Our findings have shown that JAM-C forms a one-way vascular barrier for leukocyte transendothelial migration only when present at homeostatic copy numbers. We have also shown that blocking JAM-C can reduce the number of atherogenic monocytes/macrophages in plaques by emigration, providing a novel therapeutic strategy for chronic inflammatory pathologies.


Asunto(s)
Movimiento Celular , Molécula C de Adhesión de Unión/metabolismo , Monocitos/patología , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patología , Animales , Anticuerpos/farmacología , Apolipoproteínas E/deficiencia , Apolipoproteínas E/metabolismo , Arterias Carótidas/patología , Movimiento Celular/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Citometría de Flujo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Inflamación/patología , Uniones Intercelulares/efectos de los fármacos , Uniones Intercelulares/metabolismo , Leucocitos/efectos de los fármacos , Leucocitos/patología , Lípidos/sangre , Ratones Endogámicos C57BL , Modelos Biológicos , Monocitos/efectos de los fármacos , Placa Aterosclerótica/sangre
18.
Blood ; 128(10): 1336-45, 2016 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-27402973

RESUMEN

In mammals, embryonic hematopoiesis occurs in successive waves, culminating with the emergence of hematopoietic stem cells (HSCs) in the aorta. HSCs first migrate to the fetal liver (FL), where they expand, before they seed the bone marrow niche, where they will sustain hematopoiesis throughout adulthood. In zebrafish, HSCs emerge from the dorsal aorta and colonize the caudal hematopoietic tissue (CHT). Recent studies showed that they interact with endothelial cells (ECs), where they expand, before they reach their ultimate niche, the kidney marrow. We identified tfec, a transcription factor from the mitf family, which is highly enriched in caudal endothelial cells (cECs) at the time of HSC colonization in the CHT. Gain-of-function assays indicate that tfec is capable of expanding HSC-derived hematopoiesis in a non-cell-autonomous fashion. Furthermore, tfec mutants (generated by CRISPR/Cas9) showed reduced hematopoiesis in the CHT, leading to anemia. Tfec mediates these changes by increasing the expression of several cytokines in cECs from the CHT niche. Among these, we found kitlgb, which could rescue the loss of HSCs observed in tfec mutants. We conclude that tfec plays an important role in the niche to expand hematopoietic progenitors through the modulation of several cytokines. The full comprehension of the mechanisms induced by tfec will represent an important milestone toward the expansion of HSCs for regenerative purposes.


Asunto(s)
Animales Modificados Genéticamente/embriología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Embrión no Mamífero/citología , Desarrollo Embrionario/fisiología , Células Madre Hematopoyéticas/citología , Nicho de Células Madre/fisiología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Citocinas/genética , Citocinas/metabolismo , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
19.
Data Brief ; 4: 226-8, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26217794

RESUMEN

Understanding the interactions between miRNAs and genes they regulate during the acute phase response is crucial to our understanding of inflammatory diseases and processes. Inducing the acute phase response in hepatocytes by stimulating them with interleukin-6 [1] and then examining global changes in mRNA and miRNA expression can provide insight into the timing and dynamics of these interactions. Here we provide additional data for our study, Ref. [2]. In this data, we identify and validate IL-6-induced changes in gene expression [3-6] and their functional relationships over time and between cell types by gene ontology [7,8]. We also provide data showing the enrichment of miRNA binding motifs in the 3׳UTRs of differentially expressed genes [9], and their predicted gene targets derived from our RNA-seq data [10].

20.
Genomics ; 106(2): 107-15, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25979460

RESUMEN

The expression of plasma proteins changes dramatically as a result of cytokine induction, particularly interleukin-6, and their levels are used as clinical markers of inflammation. miRNAs are important regulators of gene expression and play significant roles in many inflammatory diseases and processes. The interactions between miRNAs and the genes that they regulate during the acute phase response have not been investigated. We examined the effects of IL-6 stimulation on the transcriptome and miRNome of human and mouse primary hepatocytes and the HepG2 cell line. Using an integrated analysis, we identified differentially expressed miRNAs whose seed sequences are significantly enriched in the 3' untranslated regions of differentially expressed genes, many of which are involved in inflammation-related pathways. Our finding that certain miRNAs may de-repress critical acute phase proteins within acute timeframes has important biological and clinical implications.


Asunto(s)
Hepatocitos/metabolismo , Interleucina-6/farmacología , MicroARNs/metabolismo , ARN Mensajero/metabolismo , Proteínas de Fase Aguda/biosíntesis , Proteínas de Fase Aguda/genética , Animales , Células Cultivadas , Células Hep G2 , Hepatocitos/efectos de los fármacos , Humanos , Ratones , Transcriptoma/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...