Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Mol Biol ; 433(14): 166813, 2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-33453189

RESUMEN

The general transcription factor TFIIH contains three ATP-dependent catalytic activities. TFIIH functions in nucleotide excision repair primarily as a DNA helicase and in Pol II transcription initiation as a dsDNA translocase and protein kinase. During initiation, the XPB/Ssl2 subunit of TFIIH couples ATP hydrolysis to dsDNA translocation facilitating promoter opening and the kinase module phosphorylates Pol II to facilitate the transition to elongation. These functions are conserved between metazoans and yeast; however, yeast TFIIH also drives transcription start-site scanning in which Pol II scans downstream DNA to locate productive start-sites. The ten-subunit holo-TFIIH from S. cerevisiae has a processive dsDNA translocase activity required for scanning and a structural role in scanning has been ascribed to the three-subunit TFIIH kinase module. Here, we assess the dsDNA translocase activity of ten-subunit holo- and core-TFIIH complexes (i.e. seven subunits, lacking the kinase module) from both S. cerevisiae and H. sapiens. We find that neither holo nor core human TFIIH exhibit processive translocation, consistent with the lack of start-site scanning in humans. Furthermore, in contrast to holo-TFIIH, the S. cerevisiae core-TFIIH also lacks processive translocation and its dsDNA-stimulated ATPase activity was reduced ~5-fold to a level comparable to the human complexes, potentially explaining the reported upstream shift in start-site observed in vitro in the absence of the S. cerevisiae kinase module. These results suggest that neither human nor S. cerevisiae core-TFIIH can translocate efficiently, and that the S. cerevisiae kinase module functions as a processivity factor to allow for robust transcription start-site scanning.


Asunto(s)
ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN/genética , ADN/metabolismo , Regulación de la Expresión Génica , Factor de Transcripción TFIIH/metabolismo , Sitio de Iniciación de la Transcripción , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Iniciación de la Transcripción Genética
3.
Mol Cell ; 78(5): 890-902.e6, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32416068

RESUMEN

Acidic transcription activation domains (ADs) are encoded by a wide range of seemingly unrelated amino acid sequences, making it difficult to recognize features that promote their dynamic behavior, "fuzzy" interactions, and target specificity. We screened a large set of random 30-mer peptides for AD function in yeast and trained a deep neural network (ADpred) on the AD-positive and -negative sequences. ADpred identifies known acidic ADs within transcription factors and accurately predicts the consequences of mutations. Our work reveals that strong acidic ADs contain multiple clusters of hydrophobic residues near acidic side chains, explaining why ADs often have a biased amino acid composition. ADs likely use a binding mechanism similar to avidity where a minimum number of weak dynamic interactions are required between activator and target to generate biologically relevant affinity and in vivo function. This mechanism explains the basis for fuzzy binding observed between acidic ADs and targets.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Factores de Transcripción/genética , Activación Transcripcional/genética , Secuencia de Aminoácidos/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Proteínas de Unión al ADN/metabolismo , Aprendizaje Profundo , Unión Proteica , Dominios Proteicos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional/fisiología
4.
Nat Struct Mol Biol ; 24(12): 1139-1145, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29106413

RESUMEN

Eukaryotic mRNA transcription initiation is directed by the formation of the megadalton-sized preinitiation complex (PIC). After PIC formation, double-stranded DNA (dsDNA) is unwound to form a single-stranded DNA bubble, and the template strand is loaded into the polymerase active site. DNA opening is catalyzed by Ssl2 (XPB), the dsDNA translocase subunit of the basal transcription factor TFIIH. In yeast, transcription initiation proceeds through a scanning phase during which downstream DNA is searched for optimal start sites. Here, to test models for initial DNA opening and start-site scanning, we measure the DNA-bubble sizes generated by Saccharomyces cerevisiae PICs in real time using single-molecule magnetic tweezers. We show that ATP hydrolysis by Ssl2 opens a 6-base-pair (bp) bubble that grows to 13 bp in the presence of NTPs. These observations support a two-step model wherein ATP-dependent Ssl2 translocation leads to a 6-bp open complex that RNA polymerase II expands via NTP-dependent RNA transcription.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Factor de Transcripción TFIIB/metabolismo , Factor de Transcripción TFIIH/metabolismo , Factores de Transcripción TFII/metabolismo , Sitio de Iniciación de la Transcripción/fisiología , Iniciación de la Transcripción Genética/fisiología , Dominio Catalítico/genética , ADN Helicasas/metabolismo , Regiones Promotoras Genéticas/genética , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Factor de Transcripción TFIIB/genética , Factor de Transcripción TFIIH/genética , Factores de Transcripción TFII/genética
5.
J Biol Chem ; 291(25): 13040-7, 2016 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-27129284

RESUMEN

Saccharomyces cerevisiae RNA polymerase (Pol) II locates transcription start sites (TSS) at TATA-containing promoters by scanning sequences downstream from the site of preinitiation complex formation, a process that involves the translocation of downstream promoter DNA toward Pol II. To investigate a potential role of yeast Pol II transcription in TSS scanning, HIS4 promoter derivatives were generated that limited transcripts in the 30-bp scanned region to two nucleotides in length. Although we found that TSS scanning does not require RNA synthesis, our results revealed that transcription in the purified yeast basal system is largely ATP-independent despite a requirement for the TFIIH DNA translocase subunit Ssl2. This result is rationalized by our finding that, although they are poorer substrates, UTP and GTP can also be utilized by Ssl2. ATPγS is a strong inhibitor of rNTP-fueled translocation, and high concentrations of ATPγS make transcription completely dependent on added dATP. Limiting Pol II function with low ATP concentrations shifted the TSS position downstream. Combined with prior work, our results show that Pol II transcription plays an important role in TSS selection but is not required for the scanning reaction.


Asunto(s)
ARN Polimerasa II/fisiología , Saccharomyces cerevisiae/enzimología , Sitio de Iniciación de la Transcripción , Secuencia de Bases , ADN Helicasas/química , ADN Helicasas/fisiología , Regulación Fúngica de la Expresión Génica , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , ARN Polimerasa II/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/fisiología , Factor de Transcripción TFIIH/química , Factor de Transcripción TFIIH/fisiología , Transcripción Genética
6.
Proc Natl Acad Sci U S A ; 112(13): 3961-6, 2015 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-25775526

RESUMEN

Formation of the RNA polymerase II (Pol II) open complex (OC) requires DNA unwinding mediated by the transcription factor TFIIH helicase-related subunit XPB/Ssl2. Because XPB/Ssl2 binds DNA downstream from the location of DNA unwinding, it cannot function using a conventional helicase mechanism. Here we show that yeast TFIIH contains an Ssl2-dependent double-stranded DNA translocase activity. Ssl2 tracks along one DNA strand in the 5' → 3' direction, implying it uses the nontemplate promoter strand to reel downstream DNA into the Pol II cleft, creating torsional strain and leading to DNA unwinding. Analysis of the Ssl2 and DNA-dependent ATPase activity of TFIIH suggests that Ssl2 has a processivity of approximately one DNA turn, consistent with the length of DNA unwound during transcription initiation. Our results can explain why maintaining the OC requires continuous ATP hydrolysis and the function of TFIIH in promoter escape. Our results also suggest that XPB/Ssl2 uses this translocase mechanism during DNA repair rather than physically wedging open damaged DNA.


Asunto(s)
ADN Helicasas/metabolismo , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factor de Transcripción TFIIH/metabolismo , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Bases , Dominio Catalítico , ADN/química , Hidrólisis , Datos de Secuencia Molecular , Unión Proteica , Saccharomyces cerevisiae/enzimología , Temperatura , Transcripción Genética
7.
Mol Cell Biol ; 32(1): 12-25, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22025674

RESUMEN

To investigate the function and architecture of the open complex state of RNA polymerase II (Pol II), Saccharomyces cerevisiae minimal open complexes were assembled by using a series of heteroduplex HIS4 promoters, TATA binding protein (TBP), TFIIB, and Pol II. The yeast system demonstrates great flexibility in the position of active open complexes, spanning 30 to 80 bp downstream from TATA, consistent with the transcription start site scanning behavior of yeast Pol II. TFIIF unexpectedly modulates the activity of the open complexes, either repressing or stimulating initiation. The response to TFIIF was dependent on the sequence of the template strand within the single-stranded bubble. Mutations in the TFIIB reader and linker region, which were inactive on duplex DNA, were suppressed by the heteroduplex templates, showing that a major function of the TFIIB reader and linker is in the initiation or stabilization of single-stranded DNA. Probing of the architecture of the minimal open complexes with TFIIB-FeBABE [TFIIB-p-bromoacetamidobenzyl-EDTA-iron(III)] derivatives showed that the TFIIB core domain is surprisingly positioned away from Pol II, and the addition of TFIIF repositions the TFIIB core domain to the Pol II wall domain. Together, our results show an unexpected architecture of minimal open complexes and the regulation of activity by TFIIF and the TFIIB core domain.


Asunto(s)
Regulación Fúngica de la Expresión Génica , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factor de Transcripción TFIIB/metabolismo , Factores de Transcripción TFII/metabolismo , Oxidorreductasas de Alcohol/genética , Aminohidrolasas/genética , Secuencia de Bases , Modelos Moleculares , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Pirofosfatasas/genética , ARN Polimerasa II/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteína de Unión a TATA-Box/genética , Proteína de Unión a TATA-Box/metabolismo , Factor de Transcripción TFIIB/genética , Factores de Transcripción TFII/genética , Activación Transcripcional
8.
Mol Cell Proteomics ; 11(2): M111.008318, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22067100

RESUMEN

Knowledge of protein structures and protein-protein interactions is essential for understanding biological processes. Chemical cross-linking combined with mass spectrometry is an attractive approach for studying protein-protein interactions and protein structure, but to date its use has been limited largely by low yields of informative cross-links (because of inefficient cross-linking reactions) and by the difficulty of confidently identifying the sequences of cross-linked peptide pairs from their fragmentation spectra. Here we present an approach based on a new MS labile cross-linking reagent, BDRG (biotin-aspartate-Rink-glycine), which addresses these issues. BDRG incorporates a biotin handle (for enrichment of cross-linked peptides prior to MS analysis), two pentafluorophenyl ester groups that react with peptide amines, and a labile Rink-based bond between the pentafluorophenyl groups that allows cross-linked peptides to be separated during MS and confidently identified by database searching of their fragmentation spectra. We developed a protocol for the identification of BDRG cross-linked peptides derived from purified or partially purified protein complexes, including software to aid in the identification of different classes of cross-linker-modified peptides. Importantly, our approach permits the use of high accuracy precursor mass measurements to verify the database search results. We demonstrate the utility of the approach by applying it to purified yeast TFIIE, a heterodimeric transcription factor complex, and to a single-step affinity-purified preparation of the 12-subunit RNA polymerase II complex. The results show that the method is effective at identifying cross-linked peptides derived from purified and partially purified protein complexes and provides complementary information to that from other structural approaches. As such, it is an attractive approach to study the topology of protein complexes.


Asunto(s)
Reactivos de Enlaces Cruzados/farmacología , Complejos Multiproteicos/metabolismo , Fragmentos de Péptidos/análisis , Mapeo de Interacción de Proteínas , ARN Polimerasa II/metabolismo , Factores de Transcripción TFII/metabolismo , Ácido Aspártico/química , Biotina/química , Cromatografía de Afinidad , Cromatografía Liquida , Glicina/química , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Espectrometría de Masas en Tándem
9.
Mol Cell Biol ; 30(10): 2376-90, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20308326

RESUMEN

Targets of the tandem Gcn4 acidic activation domains in transcription preinitiation complexes were identified by site-specific cross-linking. The individual Gcn4 activation domains cross-link to three common targets, Gal11/Med15, Taf12, and Tra1, which are subunits of four conserved coactivator complexes, Mediator, SAGA, TFIID, and NuA4. The Gcn4 N-terminal activation domain also cross-links to the Mediator subunit Sin4/Med16. The contribution of the two Gcn4 activation domains to transcription was gene specific and varied from synergistic to less than additive. Gcn4-dependent genes had a requirement for Gal11 ranging from 10-fold dependence to complete Gal11 independence, while the Gcn4-Taf12 interaction did not significantly contribute to the expression of any gene studied. Complementary methods identified three conserved Gal11 activator-binding domains that bind each Gcn4 activation domain with micromolar affinity. These Gal11 activator-binding domains contribute additively to transcription activation and Mediator recruitment at Gcn4- and Gal11-dependent genes. Although we found that the conserved Gal11 KIX domain contributes to Gal11 function, we found no evidence of specific Gcn4-KIX interaction and conclude that the Gal11 KIX domain does not function by specific interaction with Gcn4. Our combined results show gene-specific coactivator requirements, a surprising redundancy in activator-target interactions, and an activator-coactivator interaction mediated by multiple low-affinity protein-protein interactions.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Complejo Mediador/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Activación Transcripcional , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/química , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Regulación Fúngica de la Expresión Génica , Complejo Mediador/química , Complejo Mediador/genética , Unión Proteica , Estructura Terciaria de Proteína , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Factores Asociados con la Proteína de Unión a TATA/genética , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factor de Transcripción TFIID/genética , Factor de Transcripción TFIID/metabolismo
10.
Mol Cell ; 18(3): 369-78, 2005 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-15866178

RESUMEN

Site-specific photocrosslinkers positioned within the central transcription-activating region of yeast Gcn4 were used to identify, in an unbiased way, three polypeptides in direct physical proximity to the activator during the process of transcription activation. Crosslinking was specific and did not change during different steps of the transcription cycle. The crosslinking targets were identified as Tra1, Gal11, and Taf12, subunits of four complexes (SAGA, NuA4, Mediator, and TFIID) known to play a role in gene regulation. Using this crosslinking assay, an activating region mutant, and extracts depleted of individual complexes containing the crosslinking targets, we found that contact with Tra1/SAGA is critical for activation, Gal11 contact has a modest effect on activation, and contact with TFIID and NuA4 is of little or no importance for activation under our conditions. Thus, a single activating region contacts multiple factors, and each contact makes differential contributions to transcriptional activation.


Asunto(s)
Proteínas de Unión al ADN/química , Regulación de la Expresión Génica , Péptidos/metabolismo , Proteínas Quinasas/química , Proteínas de Saccharomyces cerevisiae/química , Transcripción Genética , Secuencia de Aminoácidos , Reactivos de Enlaces Cruzados/metabolismo , Proteínas de Unión al ADN/metabolismo , Datos de Secuencia Molecular , Complejos Multiproteicos , Proteínas Quinasas/metabolismo , Subunidades de Proteína/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factor de Transcripción TFIID/genética , Factor de Transcripción TFIID/metabolismo
11.
Mol Cell Biol ; 24(4): 1721-35, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14749387

RESUMEN

Three cyclin-dependent kinases, CDK7, -8, and -9, are specifically involved in transcription by RNA polymerase II (Pol II) and target the Pol II C-terminal domain (CTD). The role of CDK7 and CDK8 kinase activity in transcription has been unclear, with CDK7 shown to have variable effects on transcription and CDK8 suggested to repress transcription and/or to target other gene-specific factors. Using a chemical genetics approach, the Saccharomyces cerevisiae homologs of these kinases, Kin28 and Srb10, were engineered to respond to a specific inhibitor and the inhibitor was used to test the role of these kinases in transcription in vivo and in vitro. In vitro, these kinases can both promote transcription, with up to 70% of transcription abolished when both kinases are inhibited together. Similarly, in vivo inhibition of both kinases together gives the strongest decrease in transcription, as measured by chromatin immunoprecipitation of Pol II. Kin28 and Srb10 also have overlapping roles in promoting ATP-dependent dissociation of the preinitiation complex (PIC) into the Scaffold complex. Using the engineered kinases and an ATP analog, specific kinase substrates within the PIC were identified. In addition to the previously known substrate, the Pol II CTD, it was found that Kin28 phosphorylates two subunits of Mediator and Srb10 targets two subunits of TFIID for phosphorylation.


Asunto(s)
Quinasas Ciclina-Dependientes/metabolismo , Proteínas Quinasas , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcripción Genética , Sistema Libre de Células , Quinasa 8 Dependiente de Ciclina , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Sustancias Macromoleculares , Péptidos/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Especificidad por Sustrato , Factor de Transcripción TFIID/metabolismo , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...