Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Blood ; 143(23): 2414-2424, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38457657

RESUMEN

ABSTRACT: Hyperactivation of the NF-κB cascade propagates oncogenic signaling and proinflammation, which together augments disease burden in myeloproliferative neoplasms (MPNs). Here, we systematically ablate NF-κB signaling effectors to identify core dependencies using a series of primary samples and syngeneic and patient-derived xenograft (PDX) mouse models. Conditional knockout of Rela attenuated Jak2V617F- and MPLW515L-driven onset of polycythemia vera and myelofibrosis disease hallmarks, respectively. In PDXs, RELA knockout diminished leukemic engraftment and bone marrow fibrosis while extending survival. Knockout of upstream effector Myd88 also alleviated disease burden; conversely, perturbation of negative regulator miR-146a microRNA induced earlier lethality and exacerbated disease. Perturbation of NF-κB effectors further skewed the abundance and distribution of hematopoietic multipotent progenitors. Finally, pharmacological targeting of interleukin-1 receptor-associated kinase 4 (IRAK4) with inhibitor CA-4948 suppressed disease burden and inflammatory cytokines specifically in MPN without inducing toxicity in nondiseased models. These findings highlight vulnerabilities in MPN that are exploitable with emerging therapeutic approaches.


Asunto(s)
Trastornos Mieloproliferativos , FN-kappa B , Transducción de Señal , Animales , Ratones , Humanos , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/patología , Trastornos Mieloproliferativos/metabolismo , FN-kappa B/metabolismo , Ratones Noqueados , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Quinasas Asociadas a Receptores de Interleucina-1/genética , Factor de Transcripción ReIA/metabolismo , Factor de Transcripción ReIA/genética
2.
Exp Hematol ; 132: 104178, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38340948

RESUMEN

Myeloproliferative neoplasms (MPNs) are driven by hyperactivation of JAK-STAT signaling but can demonstrate skewed hematopoiesis upon acquisition of additional somatic mutations. Here, using primary MPN samples and engineered embryonic stem cells, we demonstrate that mutations in JAK2 induced a significant increase in erythroid colony formation, whereas mutations in additional sex combs-like 1 (ASXL1) led to an erythroid colony defect. RNA-sequencing revealed upregulation of protein arginine methyltransferase 6 (PRMT6) induced by mutant ASXL1. Furthermore, genetic perturbation of PRMT6 exacerbated the MPN disease burden, including leukemic engraftment and splenomegaly, in patient-derived xenograft models, highlighting a novel tumor-suppressive function of PRMT6. However, augmented erythroid potential and bone marrow human CD71+ cells following PRMT6 knockdown were reserved only for primary MPN samples harboring ASXL1 mutations. Last, treatment of CD34+ hematopoietic/stem progenitor cells with the PRMT6 inhibitor EPZ020411 induced expression of genes involved in heme metabolism, hemoglobin, and erythropoiesis. These findings highlight interactions between JAK2 and ASXL1 mutations and a unique erythroid regulatory network in the context of mutant ASXL1.


Asunto(s)
Trastornos Mieloproliferativos , Neoplasias , Humanos , Eritropoyesis/genética , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/metabolismo , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Transducción de Señal , Mutación , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas Nucleares/genética , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo
3.
Exp Hematol ; 128: 48-66, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37611729

RESUMEN

Hyperactivation of JAK2 kinase is a unifying feature of human Ph- myeloproliferative neoplasms (MPNs), most commonly due to the JAK2 V617F mutation. Mice harboring a homologous mutation in the Jak2 locus exhibit a phenotype resembling polycythemia vera. NFκB pathway hyperactivation is present in myeloid neoplasms, including MPNs, despite scarcity of mutations in NFκB pathway genes. To determine the impact of NFκB pathway hyperactivation in conjunction with Jak2 V617F, we utilized Ikk2 (Ikk2-CA) mice. Pan-hematopoietic Ikk2-CA alone produced depletion of hematopoietic stem cells and B cells. When combined with the Jak2 V617F mutation, Ikk2-CA rescued the polycythemia vera phenotype of Jak2 V617F. Likewise, Jak2 V617F ameliorated defects in hematopoiesis produced by Ikk2-CA. Single-cell RNA sequencing of hematopoietic stem and progenitor cells revealed multiple genes antagonistically regulated by Jak2 and Ikk2, including subsets whose expression was altered by Jak2 V617F and/or Ikk2-CA but partly or fully rectified in the double mutant. We hypothesize that Jak2 promotes hematopoietic stem cell population self-renewal, whereas Ikk2 promotes myeloid lineage differentiation, and biases cell fates at several branch points in hematopoiesis. Jak2 and Ikk2 both regulate multiple genes affecting myeloid maturation and cell death. Therefore, the presence of dual Jak2 and NFκB hyperactivation may present neomorphic therapeutic vulnerabilities in myeloid neoplasms.


Asunto(s)
Trastornos Mieloproliferativos , Policitemia Vera , Ratones , Humanos , Animales , Policitemia Vera/genética , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/metabolismo , Mutación , Células Madre Hematopoyéticas/metabolismo , Hematopoyesis/genética , Proteínas Serina-Treonina Quinasas/genética
4.
Am J Hematol ; 98(7): 1029-1042, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37203407

RESUMEN

Small molecule inhibitors targeting JAK2 provide symptomatic benefits for myeloproliferative neoplasm (MPN) patients and are among first-line therapeutic agents. However, despite all having potent capacity to suppress JAK-STAT signaling, they demonstrate distinct clinical profiles suggesting contributory effects in targeting other ancillary pathways. Here, we performed comprehensive profiling on four JAK2 inhibitors either FDA-approved (ruxolitinib, fedratinib, and pacritinib) or undergoing phase 3 studies (momelotinib) to better outline mechanistic and therapeutic efficacy. Across JAK2-mutant in vitro models, all four inhibitors demonstrated similar anti-proliferative phenotypes, whereas pacritinib yielded greatest potency on suppressing colony formation in primary samples, while momelotinib exhibited unique erythroid colony formation sparing. All inhibitors reduced leukemic engraftment, disease burden, and extended survival across patient-derived xenograft (PDX) models, with strongest effects elicited by pacritinib. Through RNA-sequencing and gene set enrichment analyses, differential suppressive degrees of JAK-STAT and inflammatory response signatures were revealed, which we validated with signaling and cytokine suspension mass cytometry across primary samples. Lastly, we assessed the capacity of JAK2 inhibitors to modulate iron regulation, uncovering potent suppression of hepcidin and SMAD signaling by pacritinib. These comparative findings provide insight into the differential and beneficial effects of ancillary targeting beyond JAK2 and may help guide the use of specific inhibitors in personalized therapy.


Asunto(s)
Neoplasias de la Médula Ósea , Inhibidores de las Cinasas Janus , Trastornos Mieloproliferativos , Humanos , Inhibidores de las Cinasas Janus/uso terapéutico , Inhibidores de Proteínas Quinasas/uso terapéutico , Trastornos Mieloproliferativos/genética , Janus Quinasa 2/genética
5.
Nat Commun ; 14(1): 1601, 2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-36959190

RESUMEN

Imaging Mass Cytometry (IMC) is an emerging multiplexed imaging technology for analyzing complex microenvironments using more than 40 molecularly-specific channels. However, this modality has unique data processing requirements, particularly for patient tissue specimens where signal-to-noise ratios for markers can be low, despite optimization, and pixel intensity artifacts can deteriorate image quality and downstream analysis. Here we demonstrate an automated content-aware pipeline, IMC-Denoise, to restore IMC images deploying a differential intensity map-based restoration (DIMR) algorithm for removing hot pixels and a self-supervised deep learning algorithm for shot noise image filtering (DeepSNiF). IMC-Denoise outperforms existing methods for adaptive hot pixel and background noise removal, with significant image quality improvement in modeled data and datasets from multiple pathologies. This includes in technically challenging human bone marrow; we achieve noise level reduction of 87% for a 5.6-fold higher contrast-to-noise ratio, and more accurate background noise removal with approximately 2 × improved F1 score. Our approach enhances manual gating and automated phenotyping with cell-scale downstream analyses. Verified by manual annotations, spatial and density analysis for targeted cell groups reveal subtle but significant differences of cell populations in diseased bone marrow. We anticipate that IMC-Denoise will provide similar benefits across mass cytometric applications to more deeply characterize complex tissue microenvironments.


Asunto(s)
Algoritmos , Tomografía Computarizada por Rayos X , Humanos , Relación Señal-Ruido , Tomografía Computarizada por Rayos X/métodos , Artefactos , Citometría de Imagen , Procesamiento de Imagen Asistido por Computador/métodos
6.
Nat Cancer ; 4(1): 108-127, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36581736

RESUMEN

Myeloproliferative neoplasms (MPNs) exhibit a propensity for transformation to secondary acute myeloid leukemia (sAML), for which the underlying mechanisms remain poorly understood, resulting in limited treatment options and dismal clinical outcomes. Here, we performed single-cell RNA sequencing on serial MPN and sAML patient stem and progenitor cells, identifying aberrantly increased expression of DUSP6 underlying disease transformation. Pharmacologic dual-specificity phosphatase (DUSP)6 targeting led to inhibition of S6 and Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling while also reducing inflammatory cytokine production. DUSP6 perturbation further inhibited ribosomal S6 kinase (RSK)1, which we identified as a second indispensable candidate associated with poor clinical outcome. Ectopic expression of DUSP6 mediated JAK2-inhibitor resistance and exacerbated disease severity in patient-derived xenograft (PDX) models. Contrastingly, DUSP6 inhibition potently suppressed disease development across Jak2V617F and MPLW515L MPN mouse models and sAML PDXs without inducing toxicity in healthy controls. These findings underscore DUSP6 in driving disease transformation and highlight the DUSP6-RSK1 axis as a vulnerable, druggable pathway in myeloid malignancies.


Asunto(s)
Leucemia Mieloide Aguda , Trastornos Mieloproliferativos , Animales , Ratones , Humanos , Trastornos Mieloproliferativos/tratamiento farmacológico , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/metabolismo , Transducción de Señal/genética , Quinasas Janus/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Fosfatasa 6 de Especificidad Dual/metabolismo
7.
Exp Hematol ; 110: 47-59, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35367529

RESUMEN

Myelodysplastic syndromes (MDS) are hematopoietic stem cell disorders, the pathogenesis of which involves enhanced immune signaling that promotes or selects for mutant hematopoietic stem and progenitor cells (HSPCs). In particular, toll-like receptor (TLR) expression and signaling are enhanced in MDS, and their inhibition is an attractive therapeutic strategy. Although prior studies have reported increased expression of TLR2 and its binding partners TLR1 and TLR6 in the CD34+ cells of patients with MDS (especially those with low-risk disease), TLR expression in other cell types throughout the bone marrow is largely unknown. To address this, we used mass cytometry to assess the expression of TLR1, TLR2, and TLR6 and cytokines in the bone marrow hematopoietic cells of six low/intermediate-risk and six high-risk unmatched MDS bone marrow samples, as well as healthy controls, both at baseline and in response to TLR agonists. We observed several consistent differences between the groups. Most notably, TLR expression was upregulated in multiple cell populations in the low/intermediate-risk, but not high-risk, patients. In addition, many cytokines, including interleukin-6, interleukin-8, tumor necrosis factor α, transforming growth factor ß, macrophage inflammatory protein 1ß, and granzyme B, were highly expressed from various cell types in low/intermediate-risk patients. However, these same cytokines, with the exception of transforming growth factor ß, were expressed at lower levels in high-risk MDS. Together, these findings highlight the differential role of inflammation, and specifically TLR expression, in low/intermediate- versus high-risk MDS, and suggest that elevated TLR expression and cytokine production in multiple cell types likely influences the pathogenesis of MDS in lower-risk patients.


Asunto(s)
Citocinas , Síndromes Mielodisplásicos , Médula Ósea/patología , Humanos , Síndromes Mielodisplásicos/metabolismo , Receptor Toll-Like 1 , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 6/metabolismo , Receptores Toll-Like/metabolismo , Factor de Crecimiento Transformador beta
9.
Blood Adv ; 6(2): 611-623, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34644371

RESUMEN

Targeted inhibitors of JAK2 (eg ruxolitinib) often provide symptomatic relief for myeloproliferative neoplasm (MPN) patients, but the malignant clone persists and remains susceptible to disease transformation. These observations suggest that targeting alternative dysregulated signaling pathways may provide therapeutic benefit. Previous studies identified NFκB pathway hyperactivation in myelofibrosis (MF) and secondary acute myeloid leukemia (sAML) that was insensitive to JAK2 inhibition. Here, we provide evidence that NFκB pathway inhibition via pevonedistat targets malignant cells in MPN patient samples as well as in MPN and patient-derived xenograft mouse models that are nonredundant with ruxolitinib. Colony forming assays revealed preferential inhibition of MF colony growth compared with normal colony formation. In mass cytometry studies, pevonedistat blunted canonical TNFα responses in MF and sAML patient CD34+ cells. Pevonedistat also inhibited hyperproduction of inflammatory cytokines more effectively than ruxolitinib. Upon pevonedistat treatment alone or in combination with ruxolitinib, MPN mouse models exhibited reduced disease burden and improved survival. These studies demonstrating efficacy of pevonedistat in MPN cells in vitro as well as in vivo provide a rationale for therapeutic inhibition of NFκB signaling for MF treatment. Based on these findings, a Phase 1 clinical trial combining pevonedistat with ruxolitinib has been initiated.


Asunto(s)
Leucemia Mieloide Aguda , Trastornos Mieloproliferativos , Mielofibrosis Primaria , Animales , Ciclopentanos/uso terapéutico , Humanos , Leucemia Mieloide Aguda/patología , Ratones , Trastornos Mieloproliferativos/tratamiento farmacológico , Trastornos Mieloproliferativos/patología , Mielofibrosis Primaria/patología , Pirimidinas
10.
Cancer Discov ; 11(12): 3126-3141, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34193440

RESUMEN

Myeloproliferative neoplasms (MPN) are chronic blood diseases with significant morbidity and mortality. Although sequencing studies have elucidated the genetic mutations that drive these diseases, MPNs remain largely incurable with a significant proportion of patients progressing to rapidly fatal secondary acute myeloid leukemia (sAML). Therapeutic discovery has been hampered by the inability of genetically engineered mouse models to generate key human pathologies such as bone marrow fibrosis. To circumvent these limitations, here we present a humanized animal model of myelofibrosis (MF) patient-derived xenografts (PDX). These PDXs robustly engrafted patient cells that recapitulated the patient's genetic hierarchy and pathologies such as reticulin fibrosis and propagation of MPN-initiating stem cells. The model can select for engraftment of rare leukemic subclones to identify patients with MF at risk for sAML transformation and can be used as a platform for genetic target validation and therapeutic discovery. We present a novel but generalizable model to study human MPN biology. SIGNIFICANCE: Although the genetic events driving MPNs are well defined, therapeutic discovery has been hampered by the inability of murine models to replicate key patient pathologies. Here, we present a PDX system to model human myelofibrosis that reproduces human pathologies and is amenable to genetic and pharmacologic manipulation. This article is highlighted in the In This Issue feature, p. 2945.


Asunto(s)
Leucemia Mieloide Aguda , Trastornos Mieloproliferativos , Animales , Evolución Clonal/genética , Modelos Animales de Enfermedad , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Ratones , Mutación , Trastornos Mieloproliferativos/complicaciones , Trastornos Mieloproliferativos/tratamiento farmacológico , Trastornos Mieloproliferativos/genética
11.
Cancer Discov ; 10(3): 342-344, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32127404

RESUMEN

Aoki and colleagues have utilized single-cell RNA sequencing and imaging mass cytometry to describe the landscape of reactive, nonmalignant immune-cell populations present in classic Hodgkin lymphoma (cHL), and delineate their spatial proximity to malignant Hodgkin-Reed-Sternberg cells. From this study, they have identified a LAG3-expressing Tr1-type Treg cell population as prevalent mainly in MHC-II-negative cHL, implying a potential functional relationship underlying the differential responsiveness of MHC-II-negative versus MHC-II-positive cHLs to immunotherapy.See related article by Aoki et al., p. 406.


Asunto(s)
Enfermedad de Hodgkin , Células de Reed-Sternberg , Perfilación de la Expresión Génica , Humanos , Transcriptoma , Microambiente Tumoral
12.
Leukemia ; 33(8): 1978-1995, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30718771

RESUMEN

The distinct clinical features of myelofibrosis (MF) have been attributed in part to dysregulated inflammatory cytokine production. Circulating cytokine levels are elevated in MF patients; a subset of which have been shown to be poor prognostic indicators. In this study, cytokine overproduction was examined in MF patient plasma and in MF blood cells ex vivo using mass cytometry. Plasma cytokines measured following treatment with ruxolitinib remained markedly abnormal, indicating that aberrant cytokine production persists despite therapeutic JAK2 inhibition. In MF patient samples, 14/15 cytokines measured by mass cytometry were found to be constitutively overproduced, with the principal cellular source for most cytokines being monocytes, implicating a non-cell-autonomous role for monocyte-derived cytokines impacting disease-propagating stem/progenitor cells in MF. The majority of cytokines elevated in MF exhibited ex vivo hypersensitivity to thrombopoietin (TPO), toll-like receptor (TLR) ligands, and/or tumor necrosis factor (TNF). A subset of this group (including TNF, IL-6, IL-8, IL-10) was minimally sensitive to ruxolitinib. All TPO/TLR/TNF-sensitive cytokines, however, were sensitive to pharmacologic inhibition of NFκB and/or MAP kinase signaling. These results indicate that NFκB and MAP kinase signaling maintain cytokine overproduction in MF, and that inhibition of these pathways may provide optimal control of inflammatory pathophysiology in MF.


Asunto(s)
Citocinas/biosíntesis , Quinasas Janus/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , FN-kappa B/fisiología , Mielofibrosis Primaria/inmunología , Factores de Transcripción STAT/fisiología , Transducción de Señal/fisiología , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Monocitos/inmunología , FN-kappa B/antagonistas & inhibidores , Nitrilos , Mielofibrosis Primaria/tratamiento farmacológico , Pirazoles/uso terapéutico , Pirimidinas , Trombopoyetina/farmacología , Receptores Toll-Like/fisiología
13.
Cytometry B Clin Cytom ; 96(1): 46-56, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30426661

RESUMEN

BACKGROUND: Background: Mass cytometry (CyTOF) is a powerful tool for analyzing cellular networks at the single cell level. Due to the high-dimensional nature of this approach, analysis algorithms have been developed to visualize and interpret mass cytometry data. In this study, we applied these approaches to a cohort of patients with secondary acute myeloid leukemia (sAML). METHODS: We utilized mass cytometry to interrogate localization and intensity of thrombopoietin-mediated intracellular signaling in sAML. Extracellular and intracellular phenotypes were dissected using SPADE, viSNE, and PhenoGraph. RESULTS: Healthy controls exhibited highly localized signaling responses largely restricted to the hematopoietic stem/progenitor cell (HSPC) compartment. In contrast, sAML samples contained subpopulations outside the HSPC compartment exhibiting thrombopoietin (TPO) sensitivity comparable to or greater than immunophenotypically defined HSPCs. We employed unsupervised clustering by PhenoGraph to elucidate distinct subpopulations within these heterogeneous samples. One metacluster composed almost exclusively of Lin- CD61+ CD34- CD38- CD45low cells was identified. This subpopulation was not readily identified by established manual gating approaches, and generally exhibited greater STAT phosphorylation in response to TPO stimulation than did Lin- CD61- CD34+ CD38- cells. Lin- CD61+ CD34- CD38- CD45low cells were identified in three additional sAML patients analyzed independently using a manual gating approach based upon PhenoGraph results. Each patient exhibited a similar TPO hypersensitivity to the PhenoGraph metacluster. CONCLUSIONS: The identification of this cellular subpopulation highlights the limitations of manual gating in sAML. Our study demonstrates the potential for mass cytometry to elucidate rare subpopulations in highly heterogeneous tumors by utilizing unsupervised high dimensional analysis. © 2018 International Clinical Cytometry Society.


Asunto(s)
Citometría de Flujo/métodos , Inmunofenotipificación , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/patología , Antígenos CD/metabolismo , Citocinas/metabolismo , Células Madre Hematopoyéticas/patología , Humanos , Trombopoyetina/metabolismo
14.
Cancer Cell ; 34(5): 741-756.e8, 2018 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-30423295

RESUMEN

How specific genetic lesions contribute to transformation of non-malignant myeloproliferative neoplasms (MPNs) and myelodysplastic syndromes (MDSs) to secondary acute myeloid leukemia (sAML) are poorly understood. JARID2 is lost by chromosomal deletions in a proportion of MPN/MDS cases that progress to sAML. In this study, genetic mouse models and patient-derived xenografts demonstrated that JARID2 acts as a tumor suppressor in chronic myeloid disorders. Genetic deletion of Jarid2 either reduced overall survival of animals with MPNs or drove transformation to sAML, depending on the timing and context of co-operating mutations. Mechanistically, JARID2 recruits PRC2 to epigenetically repress self-renewal pathways in hematopoietic progenitor cells. These studies establish JARID2 as a bona fide hematopoietic tumor suppressor and highlight potential therapeutic targets.


Asunto(s)
Autorrenovación de las Células/genética , Transformación Celular Neoplásica/genética , Leucemia Mieloide Aguda/genética , Síndromes Mielodisplásicos/genética , Trastornos Mieloproliferativos/genética , Complejo Represivo Polycomb 2/genética , Animales , Sistemas CRISPR-Cas , Línea Celular Tumoral , Autorrenovación de las Células/fisiología , Transformación Celular Neoplásica/patología , Femenino , Eliminación de Gen , Técnicas de Silenciamiento del Gen , Genes Supresores de Tumor , Humanos , Leucemia Mieloide Aguda/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Síndromes Mielodisplásicos/patología , Trastornos Mieloproliferativos/patología , Proteína Proto-Oncogénica N-Myc/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Proteína 1 Compañera de Translocación de RUNX1/metabolismo , Trasplante Heterólogo
15.
J Synchrotron Radiat ; 25(Pt 4): 1060-1067, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29979167

RESUMEN

Diamond X-ray detectors with conducting nitrogen-incorporated ultra-nanocrystalline diamond (N-UNCD) films as electrodes were fabricated to measure X-ray beam flux and position. Structural characterization and functionality tests were performed for these devices. The N-UNCD films grown on unseeded diamond substrates were compared with N-UNCD films grown on a seeded silicon substrate. The feasibility of the N-UNCD films acting as electrodes for X-ray detectors was confirmed by the stable performance in a monochromatic X-ray beam. The fabrication process is able to change the surface status which may influence the signal uniformity under low bias, but this effect can be neglected under full collection bias.

16.
Methods Mol Biol ; 1636: 371-392, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28730492

RESUMEN

Mass cytometry is a powerful technology that enables the measurement of >40 parameters at the single-cell level. The inherent spectral limitations of fluorescent flow cytometry are circumvented by the use of antibodies conjugated to metal isotope reporters, which are measured quantitatively using a CyTOF mass cytometer. The high dimensionality of mass cytometry is particularly useful for the analysis of cell signaling networks in complex biological samples. We describe here methods for cell preparation, antibody staining, data acquisition, and analysis of multidimensional data from a mass cytometry experiment.


Asunto(s)
Espectrometría de Masas , Transducción de Señal , Análisis de la Célula Individual , Biomarcadores , Células de la Médula Ósea/metabolismo , Cisplatino/farmacología , Biología Computacional/métodos , Citometría de Flujo , Células Madre Hematopoyéticas/metabolismo , Humanos , Permeabilidad/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Estadística como Asunto
17.
Neurobiol Dis ; 70: 190-203, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24969022

RESUMEN

Recessively inherited loss-of-function mutations in the PTEN-induced putative kinase 1(Pink1), DJ-1 (Park7) and Parkin (Park2) genes are linked to familial cases of early-onset Parkinson's disease (PD). As part of its strategy to provide more tools for the research community, The Michael J. Fox Foundation for Parkinson's Research (MJFF) funded the generation of novel rat models with targeted disruption ofPink1, DJ-1 or Parkin genes and determined if the loss of these proteins would result in a progressive PD-like phenotype. Pathological, neurochemical and behavioral outcome measures were collected at 4, 6 and 8months of age in homozygous KO rats and compared to wild-type (WT) rats. Both Pink1 and DJ-1 KO rats showed progressive nigral neurodegeneration with about 50% dopaminergic cell loss observed at 8 months of age. ThePink1 KO and DJ-1 KO rats also showed a two to three fold increase in striatal dopamine and serotonin content at 8 months of age. Both Pink1 KO and DJ-1 KO rats exhibited significant motor deficits starting at 4months of age. However, Parkin KO rats displayed normal behaviors with no neurochemical or pathological changes. These results demonstrate that inactivation of the Pink1 or DJ-1 genes in the rat produces progressive neurodegeneration and early behavioral deficits, suggesting that these recessive genes may be essential for the survival of dopaminergic neurons in the substantia nigra (SN). These MJFF-generated novel rat models will assist the research community to elucidate the mechanisms by which these recessive genes produce PD pathology and potentially aid in therapeutic development.


Asunto(s)
Proteínas Asociadas a Microtúbulos/deficiencia , Trastornos Parkinsonianos/fisiopatología , Fenotipo , Proteínas Quinasas/deficiencia , Ubiquitina-Proteína Ligasas/deficiencia , Envejecimiento , Animales , Animales Modificados Genéticamente , Encéfalo/patología , Encéfalo/fisiopatología , Dopamina/metabolismo , Neuronas Dopaminérgicas/patología , Neuronas Dopaminérgicas/fisiología , Técnicas de Inactivación de Genes , Genes Recesivos , Masculino , Proteínas Asociadas a Microtúbulos/genética , Actividad Motora/fisiología , Trastornos Parkinsonianos/genética , Trastornos Parkinsonianos/patología , Proteína Desglicasa DJ-1 , Proteínas Quinasas/genética , Ratas Long-Evans , Serotonina/metabolismo , Ubiquitina-Proteína Ligasas/genética
18.
Nat Methods ; 10(7): 638-40, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23749298

RESUMEN

Animal models with genetic modifications under temporal and/or spatial control are invaluable to functional genomics and medical research. Here we report the generation of tissue-specific knockout rats via microinjection of zinc-finger nucleases (ZFNs) into fertilized eggs. We generated rats with loxP-flanked (floxed) alleles and a tyrosine hydroxylase promoter-driven cre allele and demonstrated Cre-dependent gene disruption in vivo. Pronuclear microinjection of ZFNs, shown by our data to be an efficient and rapid method for creating conditional knockout rats, should also be applicable in other species.


Asunto(s)
Desoxirribonucleasas/genética , Técnicas de Inactivación de Genes/métodos , Genoma/genética , Ratas/embriología , Ratas/genética , Transfección/métodos , Dedos de Zinc/genética , Animales , Ingeniería Genética/métodos , Ratas Transgénicas
19.
Commun Integr Biol ; 6(6): e26834, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24505507

RESUMEN

We previously reported that Sestd1 KO phenocopies Dact1 KO in mice, consistent with a model in which Sestd1 and Dact1 act together to form a crucial functional complex that regulates Vangl2 in the Wnt/Planar Cell Polarity (PCP) pathway. Here, we show that Dvl2, a binding partner of Dact1, also forms complexes with Sestd1, and does so independently of both Dact1 and Vangl2. In cell-based assays, whereas Sestd1 does not alter Dvl2 activation of the Wnt/ß-catenin signaling pathway, Dvl2 enhances activation of Rho family GTPases by Dact1 and Sestd1, consistent with a role in the PCP pathway. In mice, although Dvl2 KO is recessive in an otherwise wild type background, it leads to dominant embryonic lethality in either the Sestd1 or Dact1 KO background. This genetic synergy stands in contrast to the epistasis we have previously reported between Sestd1 and Dact1 KO, and suggests independent or semi-independent functions for Dvl2 vs. Sestd1/Dact1 in the regulation of the PCP pathway during development. In conclusion, biochemical and genetic interactions between Dvl2, Sestd1, and Dact1, in addition to prior reported interactions between these same molecules and Vangl2, suggest that all these gene products can form complexes together and regulate the PCP pathway during mammalian development. However, Sestd1 and Dact1 have a closely allied function in the post-translational regulation of Vangl2 that is at least partially distinct from the functions of Dvl2 in this pathway.

20.
Nat Biotechnol ; 29(1): 64-7, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21151125

RESUMEN

Gene targeting is indispensible for reverse genetics and the generation of animal models of disease. The mouse has become the most commonly used animal model system owing to the success of embryonic stem cell-based targeting technology, whereas other mammalian species lack convenient tools for genome modification. Recently, microinjection of engineered zinc-finger nucleases (ZFNs) in embryos was used to generate gene knockouts in the rat and the mouse by introducing nonhomologous end joining (NHEJ)-mediated deletions or insertions at the target site. Here we use ZFN technology in embryos to introduce sequence-specific modifications (knock-ins) by means of homologous recombination in Sprague Dawley and Long-Evans hooded rats and FVB mice. This approach enables precise genome engineering to generate modifications such as point mutations, accurate insertions and deletions, and conditional knockouts and knock-ins. The same strategy can potentially be applied to many other species for which genetic engineering tools are needed.


Asunto(s)
Desoxirribonucleasas de Localización Especificada Tipo II/genética , Embrión de Mamíferos/metabolismo , Marcación de Gen , Ingeniería Genética/métodos , Recombinación Genética , Dedos de Zinc/genética , Animales , Secuencia de Bases , Células Madre Embrionarias , Técnicas de Inactivación de Genes/métodos , Ratones , Microinyecciones , Datos de Secuencia Molecular , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes de Fusión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...