Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 378
Filtrar
1.
J Gen Physiol ; 156(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38771271

RESUMEN

The voltage-sensing domain (VSD) is a four-helix modular protein domain that converts electrical signals into conformational changes, leading to open pores and active enzymes. In most voltage-sensing proteins, the VSDs do not interact with one another, and the S1-S3 helices are considered mainly scaffolding, except in the voltage-sensing phosphatase (VSP) and the proton channel (Hv). To investigate its contribution to VSP function, we mutated four hydrophobic amino acids in S1 to alanine (F127, I131, I134, and L137), individually or in combination. Most of these mutations shifted the voltage dependence of activity to higher voltages; however, not all substrate reactions were the same. The kinetics of enzymatic activity were also altered, with some mutations significantly slowing down dephosphorylation. The voltage dependence of VSD motions was consistently shifted to lower voltages and indicated a second voltage-dependent motion. Additionally, none of the mutations broke the VSP dimer, indicating that the S1 impact could stem from intra- and/or intersubunit interactions. Lastly, when the same mutations were introduced into a genetically encoded voltage indicator, they dramatically altered the optical readings, making some of the kinetics faster and shifting the voltage dependence. These results indicate that the S1 helix in VSP plays a critical role in tuning the enzyme's conformational response to membrane potential transients and influencing the function of the VSD.


Asunto(s)
Monoéster Fosfórico Hidrolasas , Animales , Monoéster Fosfórico Hidrolasas/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/química , Interacciones Hidrofóbicas e Hidrofílicas , Mutación , Dominios Proteicos , Cinética , Humanos , Fosforilación
2.
Org Biomol Chem ; 22(24): 4940-4949, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38809109

RESUMEN

The synthesis of a biologically relevant 2-amino-N3-alkylamido 4-quinazolinone has been accomplished in four steps from commercially available materials using design principles from both modular and divergent synthesis. N3-Alkylation of 2-chloro-4(3H)-quinazolinone using methyl bromoacetate, followed by C2-amination produced a suitable scaffold for introducing molecular diversity. Optimization of alkylation conditions afforded full regioselectivity, enabling exclusive access to the N-alkylated isomer. Subsequent C2-amination using piperidine, pyrrolidine, or diethylamine, followed by amide bond formation using variously substituted phenethylamines, generated fifteen unique 4-quinazolinones bearing C2-amino and N3-alkylamido substituents. These efforts highlight the reciprocal influence of C2 and N3 substitution on functionalization at either position, establish an effective synthetic pathway toward 2,N3-disubstituted 4-quinazolinones, and enable preliminary bioactivity studies while providing an experiential learning opportunity for undergraduate student researchers.

3.
EBioMedicine ; 104: 105163, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38772281

RESUMEN

BACKGROUND: Bone metastasis is a common consequence of advanced prostate cancer. Bisphosphonates can be used to manage symptoms, but there are currently no curative treatments available. Altered tumour cell glycosylation is a hallmark of cancer and is an important driver of a malignant phenotype. In prostate cancer, the sialyltransferase ST6GAL1 is upregulated, and studies show ST6GAL1-mediated aberrant sialylation of N-glycans promotes prostate tumour growth and disease progression. METHODS: Here, we monitor ST6GAL1 in tumour and serum samples from men with aggressive prostate cancer and using in vitro and in vivo models we investigate the role of ST6GAL1 in prostate cancer bone metastasis. FINDINGS: ST6GAL1 is upregulated in patients with prostate cancer with tumours that have spread to the bone and can promote prostate cancer bone metastasis in vivo. The mechanisms involved are multi-faceted and involve modification of the pre-metastatic niche towards bone resorption to promote the vicious cycle, promoting the development of M2 like macrophages, and the regulation of immunosuppressive sialoglycans. Furthermore, using syngeneic mouse models, we show that inhibiting sialylation can block the spread of prostate tumours to bone. INTERPRETATION: Our study identifies an important role for ST6GAL1 and α2-6 sialylated N-glycans in prostate cancer bone metastasis, provides proof-of-concept data to show that inhibiting sialylation can suppress the spread of prostate tumours to bone, and highlights sialic acid blockade as an exciting new strategy to develop new therapies for patients with advanced prostate cancer. FUNDING: Prostate Cancer Research and the Mark Foundation For Cancer Research, the Medical Research Council and Prostate Cancer UK.


Asunto(s)
Neoplasias Óseas , Ácido N-Acetilneuramínico , Neoplasias de la Próstata , Sialiltransferasas , Masculino , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Humanos , Sialiltransferasas/metabolismo , Sialiltransferasas/genética , Animales , Neoplasias Óseas/secundario , Neoplasias Óseas/metabolismo , Neoplasias Óseas/tratamiento farmacológico , Ratones , Ácido N-Acetilneuramínico/metabolismo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Antígenos CD/metabolismo , Polisacáridos/farmacología , Glicosilación , beta-D-Galactósido alfa 2-6-Sialiltransferasa
4.
J Biomech Eng ; 146(9)2024 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-38529730

RESUMEN

Tendinopathy is a leading cause of mobility issues. Currently, the cell-matrix interactions involved in the development of tendinopathy are not fully understood. In vitro tendon models provide a unique tool for addressing this knowledge gap as they permit fine control over biochemical, micromechanical, and structural aspects of the local environment to explore cell-matrix interactions. In this study, direct-write, near-field electrospinning of gelatin solution was implemented to fabricate micron-scale fibrous scaffolds that mimic native collagen fiber size and orientation. The stiffness of these fibrous scaffolds was found to be controllable between 1 MPa and 8 MPa using different crosslinking methods (EDC, DHT, DHT+EDC) or through altering the duration of crosslinking with EDC (1 h to 24 h). EDC crosslinking provided the greatest fiber stability, surviving up to 3 weeks in vitro. Differences in stiffness resulted in phenotypic changes for equine tenocytes with low stiffness fibers (∼1 MPa) promoting an elongated nuclear aspect ratio while those on high stiffness fibers (∼8 MPa) were rounded. High stiffness fibers resulted in the upregulation of matrix metalloproteinase (MMPs) and proteoglycans (possible indicators for tendinopathy) relative to low stiffness fibers. These results demonstrate the feasibility of direct-written gelatin scaffolds as tendon in vitro models and provide evidence that matrix mechanical properties may be crucial factors in cell-matrix interactions during tendinopathy formation.


Asunto(s)
Gelatina , Tenocitos , Andamios del Tejido , Gelatina/química , Animales , Caballos , Tenocitos/citología , Tenocitos/metabolismo , Andamios del Tejido/química , Fenómenos Mecánicos , Regulación de la Expresión Génica , Forma de la Célula , Fenómenos Biomecánicos
5.
Phys Rev Lett ; 132(7): 070401, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38427862

RESUMEN

The Floquet code utilizes a periodic sequence of two-qubit measurements to realize the topological order. After each measurement round, the instantaneous stabilizer group can be mapped to a honeycomb toric code, explaining the topological feature. The code also possesses a time-crystal order-the e-m transmutation after every cycle, breaking the Floquet symmetry of the measurement schedule. This behavior is distinct from the stationary topological order realized in either random circuits or time-independent Hamiltonian. Therefore, the resultant phase belongs to the overlap between the classes of Floquet enriched topological orders and measurement-induced phases. In this Letter, we construct a continuous path interpolating between the Floquet and toric codes, focusing on the transition between the time-crystal and stationary topological phases. We show that this transition is characterized by a divergent length scale. We also add single-qubit perturbations to the model and obtain a richer two-dimensional parametric phase diagram of the Floquet code, showing the stability of the Floquet enriched topological order.

6.
Ecol Evol ; 14(2): e11037, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38390004

RESUMEN

The amphibian-infecting chytrid fungus, Batrachochytrium dendrobatidis (Bd), is widespread throughout Africa and is linked to declines of populations and species across the continent. While it is well established that the lineage of Bd encodes traits which determine disease severity, knowledge around how lineages are distributed according to environmental envelope is unclear. We here studied the distribution of Bd in South Africa based on the two lineages found, BdGPL and BdCAPE, in terms of their genome and environmental envelope statistically associated with their distribution. We used Bd surveillance data from published studies, as well as data collected during fieldwork from across South Africa, Lesotho, and eSwatini with samples collected along a transect spanning most of South Africa from Lesotho to the west coast. We utilized lineage-typing qPCR to resolve the spatial distribution of BdGPL and BdCAPE across South Africa and used the resulting surveillance data to create a predictive ecological niche model for Bd lineages in South Africa. Phylogenomic analyses were performed on isolates sourced from across the transect. We show that BdGPL demonstrates a strong isolation by distance suggestive of stepping-stone dispersal, while BdCAPE showed two distinct clusters within their genomic structure that appear geographically and temporally clustered, indicating two separate invasions. Our predictive niche model revealed that the two lineages tended to occur in different ecotypes; BdGPL was associated with lower altitude, arid regions while BdCAPE occurred across cooler, higher altitude environs. Niche predictions identified a zone of lineage contact, where genomics identified inter-lineage recombinants. We argue that this zone of recombination should be prioritized for disease surveillance as it is a potential hotspot for the evolution of variants of amphibian chytrid with novel traits that may be epidemiologically relevant.

7.
Open Forum Infect Dis ; 11(2): ofad688, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38390459

RESUMEN

Background: Carbapenem-resistant Enterobacterales (CRE) are an urgent public health threat in the United States. Objective: Describe the clinical and molecular epidemiology of CRE in a multicenter pediatric cohort. Methods: CRACKLE-1 and CRACKLE-2 are prospective cohort studies with consecutive enrollment of hospitalized patients with CRE infection or colonization between 24 December 2011 and 31 August 2017. Patients younger than age 18 years and enrolled in the CRACKLE studies were included in this analysis. Clinical data were obtained from the electronic health record. Carbapenemase genes were detected using polymerase chain reaction and whole-genome sequencing. Results: Fifty-one children were identified at 18 healthcare system study sites representing all U.S. census regions. The median age was 8 months, with 67% younger than age 2 years. Median number of days from admission to culture collection was 11. Seventy-three percent of patients had required intensive care and 41% had a history of mechanical ventilation. More than half of children had no documented comorbidities (Q1, Q3 0, 2). Sixty-seven percent previously received antibiotics during their hospitalization. The most common species isolated were Enterobacter species (41%), Klebsiella pneumoniae (27%), and Escherichia coli (20%). Carbapenemase genes were detected in 29% of isolates tested, which was lower than previously described in adults from this cohort (61%). Thirty-four patients were empirically treated on the date of culture collection, but only 6 received an antibiotic to which the CRE isolate was confirmed susceptible in vitro. Thirty-day mortality was 13.7%. Conclusions: CRE infection or colonization in U.S. children was geographically widespread, predominantly affected children younger than age 2 years, associated with significant mortality, and less commonly caused by carbapenemase-producing strains than in adults.

8.
G3 (Bethesda) ; 14(4)2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38334143

RESUMEN

Pollinators are vital for food security and the maintenance of terrestrial ecosystems. Bumblebees are important pollinators across northern temperate, arctic, and alpine ecosystems, yet are in decline across the globe. Vairimorpha bombi is a parasite belonging to the fungal class Microsporidia that has been implicated in the rapid decline of bumblebees in North America, where it may be an emerging infectious disease. To investigate the evolutionary basis of pathogenicity of V. bombi, we sequenced and assembled its genome using Oxford Nanopore and Illumina technologies and performed phylogenetic and genomic evolutionary analyses. The genome assembly for V. bombi is 4.73 Mb, from which we predicted 1,870 protein-coding genes and 179 tRNA genes. The genome assembly has low repetitive content and low GC content. V. bombi's genome assembly is the smallest of the Vairimorpha and closely related Nosema genera, but larger than those found in the Encephalitozoon and Ordospora sister clades. Orthology and phylogenetic analysis revealed 18 core conserved single-copy microsporidian genes including the histone acetyltransferase (HAT) GCN5. Surprisingly, V. bombi was unique to the microsporidia in not encoding the second predicted HAT ESA1. The V. bombi genome assembly annotation included 265 unique genes (i.e. not predicted in other microsporidia genome assemblies), 20% of which encode a secretion signal, which is a significant enrichment. Intriguingly, of the 36 microsporidian genomes we analyzed, 26 also had a significant enrichment of secreted signals encoded by unique genes, ranging from 6 to 71% of those predicted genes. These results suggest that microsporidia are under selection to generate and purge diverse and unique genes encoding secreted proteins, potentially contributing to or facilitating infection of their diverse hosts. Furthermore, V. bombi has 5/7 conserved spore wall proteins (SWPs) with its closest relative V. ceranae (that primarily infects honeybees), while also uniquely encoding four additional SWPs. This gene class is thought to be essential for infection, providing both environmental protection and recognition and uptake into the host cell. Together, our results show that SWPs and unique genes encoding a secretion signal are rapidly evolving in the microsporidia, suggesting that they underpin key pathobiological traits including host specificity and pathogenicity.


Asunto(s)
Ecosistema , Microsporidios , Nosema , Abejas/genética , Animales , Filogenia , Nosema/genética , América del Norte
9.
bioRxiv ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38234747

RESUMEN

The voltage sensing domain (VSD) is a four-helix modular protein domain that converts electrical signals into conformational changes, leading to open pores and active enzymes. In most voltage sensing proteins, the VSDs do not interact with one another and the S1-S3 helices are considered mainly as scaffolding. The two exceptions are the voltage sensing phosphatase (VSP) and the proton channel (Hv). VSP is a voltage-regulated enzyme and Hvs are channels that only have VSDs. To investigate the S1 contribution to VSP function, we individually mutated four hydrophobic amino acids in S1 to alanine (F127, I131, I134 and L137). We also combined these mutations to generate quadruple mutation designated S1-Q. Most of these mutations shifted the voltage dependence of activity to higher voltages though interestingly, not all substrate reactions were the same. The kinetics of enzymatic activity were also altered with some mutations significantly slowing down dephosphorylation. The voltage dependence of VSD motions were consistently shifted to lower voltages and indicated a second voltage dependent motion. Co-immunoprecipitation demonstrated that none of the mutations broke the VSP dimer indicating that the S1 impact could stem from intrasubunit and/or intersubunit interactions. Lastly, when the same alanine mutations were introduced into a genetically encoded voltage indicator, they dramatically altered the optical readings, making some of the kinetics faster and shifting the voltage dependence. These results indicate that the S1 helix in VSP plays a critical role in tuning the enzymes conformational response to membrane potential transients and influencing the function of the VSD.

10.
J Biomech Eng ; 146(4)2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38270930

RESUMEN

The human body represents a collection of interacting systems that range in scale from nanometers to meters. Investigations from a systems perspective focus on how the parts work together to enact changes across spatial scales, and further our understanding of how systems function and fail. Here, we highlight systems approaches presented at the 2022 Summer Biomechanics, Bio-engineering, and Biotransport Conference in the areas of solid mechanics; fluid mechanics; tissue and cellular engineering; biotransport; and design, dynamics, and rehabilitation; and biomechanics education. Systems approaches are yielding new insights into human biology by leveraging state-of-the-art tools, which could ultimately lead to more informed design of therapies and medical devices for preventing and treating disease as well as rehabilitating patients using strategies that are uniquely optimized for each patient. Educational approaches can also be designed to foster a foundation of systems-level thinking.


Asunto(s)
Bioingeniería , Análisis de Sistemas , Humanos , Fenómenos Biomecánicos , Biofisica
11.
J Clin Endocrinol Metab ; 109(2): 402-412, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-37683082

RESUMEN

CONTEXT: Thyroid nodule ultrasound-based risk stratification schemas rely on the presence of high-risk sonographic features. However, some malignant thyroid nodules have benign appearance on thyroid ultrasound. New methods for thyroid nodule risk assessment are needed. OBJECTIVE: We investigated polygenic risk score (PRS) accounting for inherited thyroid cancer risk combined with ultrasound-based analysis for improved thyroid nodule risk assessment. METHODS: The convolutional neural network classifier was trained on thyroid ultrasound still images and cine clips from 621 thyroid nodules. Phenome-wide association study (PheWAS) and PRS PheWAS were used to optimize PRS for distinguishing benign and malignant nodules. PRS was evaluated in 73 346 participants in the Colorado Center for Personalized Medicine Biobank. RESULTS: When the deep learning model output was combined with thyroid cancer PRS and genetic ancestry estimates, the area under the receiver operating characteristic curve (AUROC) of the benign vs malignant thyroid nodule classifier increased from 0.83 to 0.89 (DeLong, P value = .007). The combined deep learning and genetic classifier achieved a clinically relevant sensitivity of 0.95, 95% CI [0.88-0.99], specificity of 0.63 [0.55-0.70], and positive and negative predictive values of 0.47 [0.41-0.58] and 0.97 [0.92-0.99], respectively. AUROC improvement was consistent in European ancestry-stratified analysis (0.83 and 0.87 for deep learning and deep learning combined with PRS classifiers, respectively). Elevated PRS was associated with a greater risk of thyroid cancer structural disease recurrence (ordinal logistic regression, P value = .002). CONCLUSION: Augmenting ultrasound-based risk assessment with PRS improves diagnostic accuracy.


Asunto(s)
Neoplasias de la Tiroides , Nódulo Tiroideo , Humanos , Nódulo Tiroideo/diagnóstico por imagen , Nódulo Tiroideo/genética , Puntuación de Riesgo Genético , Sensibilidad y Especificidad , Recurrencia Local de Neoplasia , Neoplasias de la Tiroides/diagnóstico por imagen , Neoplasias de la Tiroides/genética , Ultrasonografía/métodos
12.
J Biomech Eng ; 146(1)2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37831117

RESUMEN

Female adolescent athletes are at a higher risk of tearing their anterior cruciate ligament (ACL) than male counterparts. While most work related to hormones has focused on the effects of estrogen to understand the increased risk of ACL injury, there are other understudied factors, including testosterone. The purpose of this study was to determine how surgical castration in the male porcine model influences ACL size and function across skeletal growth. Thirty-six male Yorkshire crossbreed pigs were raised to 3 (juvenile), 4.5 (early adolescent), and 6 months (adolescent) of age. Animals were either castrated (barrows) within 2 weeks after birth or were left intact (boars). Posteuthanasia, joint and ACL size were assessed via MRI, and biomechanics were assessed via a robotic testing system. Joint size increased throughout age, yet barrows had smaller joints than boars. ACL cross-sectional area (CSA), length, volume, and in situ stiffness increased with age, as did the percent contribution of the ACL anteromedial (AM) bundle to resisting loads. Boar ACL, AM bundle, and PL bundle volumes were 19%, 25%, and 15% larger than barrows across ages. However, ACL CSA, in situ stiffness, and bundle contribution were similar between boars and barrows. The barrows had smaller temporal increases in AM bundle function than boars, but these data were highly variable. Early and sustained loss in testosterone leads to subtle differences in ACL morphology but may not influence measures associated with increased injury risk, such as CSA or bundle forces in response to applied loads.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Traumatismos de la Rodilla , Humanos , Adolescente , Masculino , Animales , Porcinos , Femenino , Ligamento Cruzado Anterior/fisiología , Ligamento Cruzado Anterior/cirugía , Castración , Testosterona , Articulación de la Rodilla/fisiología
13.
Artículo en Inglés | MEDLINE | ID: mdl-38146191

RESUMEN

Health services research is underpinned by partnerships between researchers and health services. Partnership-based research is increasingly needed to deal with the uncertainty of global pandemics, climate change induced severe weather events, and other disruptions. To date there is very little data on what has happened to health services research during the COVID-19 pandemic. This paper describes the establishment of an Australian multistate Decolonising Practice research project and charts its adaptation in the face of disruptions. The project used cooperative inquiry method, where partner health services contribute as coresearchers. When the COVID-19 pandemic hit, data collection needed to be immediately paused, and when restrictions started to lift, all research plans had to be renegotiated with services. Adapting the research surfaced health service, university, and staffing considerations. Our experience suggests that cooperative inquiry was invaluable in successfully navigating this uncertainty and negotiating the continuance of the research. Flexible, participatory methods such as cooperative inquiry will continue to be vital for successful health services research predicated on partnerships between researchers and health services into the future. They are also crucial for understanding local context and health services priorities and ways of working, and for decolonising Indigenous health research.


Asunto(s)
Aborigenas Australianos e Isleños del Estrecho de Torres , COVID-19 , Humanos , Australia/epidemiología , Pandemias , Investigación sobre Servicios de Salud , COVID-19/epidemiología
14.
J Fungi (Basel) ; 9(11)2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37998909

RESUMEN

Aspergillus fumigatus has been found to coinfect patients with severe SARS-CoV-2 virus infection, leading to COVID-19-associated pulmonary aspergillosis (CAPA). The CAPA all-cause mortality rate is approximately 50% and may be complicated by azole resistance. Genomic epidemiology can help shed light on the genetics of A. fumigatus causing CAPA, including the prevalence of resistance-associated alleles. We present a population genomic analysis of 21 CAPA isolates from four European countries with these isolates compared against 240 non-CAPA A. fumigatus isolates from a wider population. Bioinformatic analysis and antifungal susceptibility testing were performed to quantify resistance and identify possible genetically encoded azole-resistant mechanisms. The phylogenetic analysis of the 21 CAPA isolates showed that they were representative of the wider A. fumigatus population with no obvious clustering. The prevalence of phenotypic azole resistance in CAPA was 14.3% (n = 3/21); all three CAPA isolates contained a known resistance-associated cyp51A polymorphism. The relatively high prevalence of azole resistance alleles that we document poses a probable threat to treatment success rates, warranting the enhanced surveillance of A. fumigatus genotypes in these patients. Furthermore, potential changes to antifungal first-line treatment guidelines may be needed to improve patient outcomes when CAPA is suspected.

15.
Front Physiol ; 14: 1200119, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37781224

RESUMEN

Lithium is commonly prescribed as a mood stabilizer in a variety of mental health conditions, yet its molecular mode of action is incompletely understood. Many cellular events associated with lithium appear tied to mitochondrial function. Further, recent evidence suggests that lithium bioactivities are isotope specific. Here we focus on lithium effects related to mitochondrial calcium handling. Lithium protected against calcium-induced permeability transition and decreased the calcium capacity of liver mitochondria at a clinically relevant concentration. In contrast, brain mitochondrial calcium capacity was increased by lithium. Surprisingly, 7Li acted more potently than 6Li on calcium capacity, yet 6Li was more effective at delaying permeability transition. The size distribution of amorphous calcium phosphate colloids formed in vitro was differentially affected by lithium isotopes, providing a mechanistic basis for the observed isotope specific effects on mitochondrial calcium handling. This work highlights a need to better understand how mitochondrial calcium stores are structurally regulated and provides key considerations for future formulations of lithium-based therapeutics.

16.
PLoS Biol ; 21(9): e3002278, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37708139

RESUMEN

Sexual reproduction involving meiosis is essential in most eukaryotes. This produces offspring with novel genotypes, both by segregation of parental chromosomes as well as crossovers between homologous chromosomes. A sexual cycle for the opportunistic human pathogenic fungus Aspergillus fumigatus is known, but the genetic consequences of meiosis have remained unknown. Among other Aspergilli, it is known that A. flavus has a moderately high recombination rate with an average of 4.2 crossovers per chromosome pair, whereas A. nidulans has in contrast a higher rate with 9.3 crossovers per chromosome pair. Here, we show in a cross between A. fumigatus strains that they produce an average of 29.9 crossovers per chromosome pair and large variation in total map length across additional strain crosses. This rate of crossovers per chromosome is more than twice that seen for any known organism, which we discuss in relation to other genetic model systems. We validate this high rate of crossovers through mapping of resistance to the laboratory antifungal acriflavine by using standing variation in an undescribed ABC efflux transporter. We then demonstrate that this rate of crossovers is sufficient to produce one of the common multidrug resistant haplotypes found in the cyp51A gene (TR34/L98H) in crosses among parents harboring either of 2 nearby genetic variants, possibly explaining the early spread of such haplotypes. Our results suggest that genomic studies in this species should reassess common assumptions about linkage between genetic regions. The finding of an unparalleled crossover rate in A. fumigatus provides opportunities to understand why these rates are not generally higher in other eukaryotes.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Aspergillus fumigatus , Humanos , Aspergillus fumigatus/genética , Antifúngicos , Transporte Biológico , Eucariontes , Meiosis/genética
18.
J Orthop Res ; 41(10): 2133-2162, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37573480

RESUMEN

Several tendon and ligament animal models were presented at the 2022 Orthopaedic Research Society Tendon Section Conference held at the University of Pennsylvania, May 5 to 7, 2022. A key objective of the breakout sessions at this meeting was to develop guidelines for the field, including for preclinical tendon and ligament animal models. This review summarizes the perspectives of experts for eight surgical small and large animal models of rotator cuff tear, flexor tendon transection, anterior cruciate ligament tear, and Achilles tendon injury using the framework: "Why, Who, What, Where, When, and How" (5W1H). A notable conclusion is that the perfect tendon model does not exist; there is no single gold standard animal model that represents the totality of tendon and ligament disease. Each model has advantages and disadvantages and should be carefully considered in light of the specific research question. There are also circumstances when an animal model is not the best approach. The wide variety of tendon and ligament pathologies necessitates choices between small and large animal models, different anatomic sites, and a range of factors associated with each model during the planning phase. Attendees agreed on some guiding principles including: providing clear justification for the model selected, providing animal model details at publication, encouraging sharing of protocols and expertise, improving training of research personnel, and considering greater collaboration with veterinarians. A clear path for translating from animal models to clinical practice was also considered as a critical next step for accelerating progress in the tendon and ligament field.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Lesiones del Manguito de los Rotadores , Traumatismos de los Tendones , Animales , Tendones , Ligamento Cruzado Anterior/cirugía
19.
Sci Adv ; 9(29): eadh8839, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37478175

RESUMEN

Using a citizen science approach, we identify a country-wide exposure to aerosolized spores of a human fungal pathogen, Aspergillus fumigatus, that has acquired resistance to the agricultural fungicide tebuconazole and first-line azole clinical antifungal drugs. Genomic analysis shows no distinction between resistant genotypes found in the environment and in patients, indicating that at least 40% of azole-resistant A. fumigatus infections are acquired from environmental exposures. Hotspots and coldspots of aerosolized azole-resistant spores were not stable between seasonal sampling periods. This suggests a high degree of atmospheric mixing resulting in an estimated per capita cumulative annual exposure of 21 days (±2.6). Because of the ubiquity of this measured exposure, it is imperative that we determine sources of azole-resistant A. fumigatus to reduce treatment failure in patients with aspergillosis.


Asunto(s)
Aspergilosis , Ciencia Ciudadana , Humanos , Aspergillus fumigatus/genética , Farmacorresistencia Fúngica/genética , Aspergilosis/tratamiento farmacológico , Aspergilosis/microbiología , Antifúngicos/farmacología , Azoles/farmacología
20.
Carcinogenesis ; 44(6): 485-496, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37463322

RESUMEN

The chromobox-containing protein CBX4 is an important regulator of epithelial cell proliferation and differentiation, and has been implicated in several cancer types. The cancer stem cell (CSC) population is a key driver of metastasis and recurrence. The undifferentiated, plastic state characteristic of CSCs relies on cues from the microenvironment. Cancer-associated fibroblasts (CAFs) are a major component of the microenvironment that can influence the CSC population through the secretion of extracellular matrix and a variety of growth factors. Here we show CBX4 is a critical regulator of the CSC phenotype in squamous cell carcinomas of the skin and hypopharynx. Moreover, CAFs can promote the expression of CBX4 in the CSC population through the secretion of interleukin-6 (IL-6). IL-6 activates JAK/STAT3 signaling to increase ∆Np63α-a key transcription factor that is essential for epithelial stem cell function and the maintenance of proliferative potential that is capable of regulating CBX4. Targeting the JAK/STAT3 axis or CBX4 directly suppresses the aggressive phenotype of CSCs and represents a novel opportunity for therapeutic intervention.


Asunto(s)
Fibroblastos Asociados al Cáncer , Carcinoma de Células Escamosas , Humanos , Fibroblastos Asociados al Cáncer/metabolismo , Interleucina-6/metabolismo , Línea Celular Tumoral , Carcinoma de Células Escamosas/patología , Proliferación Celular/genética , Cromatina/metabolismo , Células Madre Neoplásicas/patología , Fibroblastos/metabolismo , Microambiente Tumoral/genética , Ligasas/genética , Ligasas/metabolismo , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA