Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 7(1): 484, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649520

RESUMEN

Spontaneous cancers in companion dogs are robust models of human disease. Tracking tumor-specific immune responses in these models requires reagents to perform species-specific single cell T cell receptor sequencing (scTCRseq). scTCRseq and integration with scRNA data have not been demonstrated on companion dogs with cancer. Here, five healthy dogs, two dogs with T cell lymphoma and four dogs with melanoma are selected to demonstrate applicability of scTCRseq in a cancer immunotherapy setting. Single-cell suspensions of PBMCs or lymph node aspirates are profiled using scRNA and dog-specific scTCRseq primers. In total, 77,809 V(D)J-expressing cells are detected, with an average of 3498 (348 - 5,971) unique clonotypes identified per sample. In total, 29/34, 40/40, 22/22 and 9/9 known functional TRAV, TRAJ, TRBV and TRBJ gene segments are observed respectively. Pseudogene or otherwise defective gene segments are also detected supporting re-annotation of several as functional. Healthy dogs exhibit highly diverse repertoires, T cell lymphomas exhibit clonal repertoires, and vaccine-treated melanoma dogs are dominated by a small number of highly abundant clonotypes. scRNA libraries define large clusters of V(D)J-expressing CD8+ and CD4 + T cells. Dominant clonotypes observed in melanoma PBMCs are predominantly CD8 + T cells, with activated phenotypes, suggesting possible anti-tumor T cell populations.


Asunto(s)
Receptores de Antígenos de Linfocitos T , Análisis de la Célula Individual , Animales , Perros , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Melanoma/genética , Melanoma/inmunología , Melanoma/veterinaria , Enfermedades de los Perros/inmunología , Enfermedades de los Perros/genética , Linfoma de Células T/inmunología , Linfoma de Células T/veterinaria , Linfoma de Células T/genética
2.
bioRxiv ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38464076

RESUMEN

The transplantation of gene-modified autologous hematopoietic stem and progenitor cells (HSPCs) offers a promising therapeutic approach for hematological and immunological disorders. However, this strategy is often limited by the toxicities associated with traditional conditioning regimens. Antibody-based conditioning strategies targeting cKIT and CD45 antigens have shown potential in mitigating these toxicities, but their long-term safety and efficacy in clinical settings require further validation. In this study, we investigate the thrombopoietin (TPO) receptor, cMPL, as a novel target for conditioning protocols. We demonstrate that high surface expression of cMPL is a hallmark feature of long-term repopulating hematopoietic stem cells (LT-HSCs) within the adult human CD34+ HSPC subset. Targeting the cMPL receptor facilitates the separation of human LT-HSCs from mature progenitors, a delineation not achievable with cKIT. Leveraging this finding, we developed a cMPL-targeting immunotoxin, demonstrating its ability to selectively deplete host cMPLhigh LT-HSCs with a favorable safety profile and rapid clearance within 24 hours post-infusion in rhesus macaques. These findings present significant potential to advance our understanding of human hematopoiesis and enhance the therapeutic outcomes of ex vivo autologous HSPC gene therapies.

3.
Cancer Res Commun ; 3(11): 2312-2330, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37910143

RESUMEN

The malignant Hodgkin and Reed Sternberg (HRS) cells of classical Hodgkin lymphoma (cHL) are scarce in affected lymph nodes, creating a challenge to detect driver somatic mutations. As an alternative to cell purification techniques, we hypothesized that ultra-deep exome sequencing would allow genomic study of HRS cells, thereby streamlining analysis and avoiding technical pitfalls. To test this, 31 cHL tumor/normal pairs were exome sequenced to approximately 1,000× median depth of coverage. An orthogonal error-corrected sequencing approach verified >95% of the discovered mutations. We identified mutations in genes novel to cHL including: CDH5 and PCDH7, novel stop gain mutations in IL4R, and a novel pattern of recurrent mutations in pathways regulating Hippo signaling. As a further application of our exome sequencing, we attempted to identify expressed somatic single-nucleotide variants (SNV) in single-nuclei RNA sequencing (snRNA-seq) data generated from a patient in our cohort. Our snRNA analysis identified a clear cluster of cells containing a somatic SNV identified in our deep exome data. This cluster has differentially expressed genes that are consistent with genes known to be dysregulated in HRS cells (e.g., PIM1 and PIM3). The cluster also contains cells with an expanded B-cell clonotype further supporting a malignant phenotype. This study provides proof-of-principle that ultra-deep exome sequencing can be utilized to identify recurrent mutations in HRS cells and demonstrates the feasibility of snRNA-seq in the context of cHL. These studies provide the foundation for the further analysis of genomic variants in large cohorts of patients with cHL. SIGNIFICANCE: Our data demonstrate the utility of ultra-deep exome sequencing in uncovering somatic variants in Hodgkin lymphoma, creating new opportunities to define the genes that are recurrently mutated in this disease. We also show for the first time the successful application of snRNA-seq in Hodgkin lymphoma and describe the expression profile of a putative cluster of HRS cells in a single patient.


Asunto(s)
Enfermedad de Hodgkin , Humanos , Enfermedad de Hodgkin/genética , Células de Reed-Sternberg/metabolismo , Mutación/genética , Secuenciación de Nucleótidos de Alto Rendimiento , ARN Nuclear Pequeño/metabolismo
4.
iScience ; 26(10): 107937, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37810214

RESUMEN

To explore mechanisms of response to combined PD-1/CTLA-4 immune checkpoint blockade (ICB) treatment in individual cell types, we generated scRNA-seq using a mouse model of invasive urothelial carcinoma with three conditions: untreated tumor, treated tumor, and tumor treated after CD4+ T cell depletion. After classifying tumor cells based on detection of somatic variants and assigning non-tumor cell types using SingleR, we performed differential expression analysis, overrepresentation analysis, and gene set enrichment analysis (GSEA) within each cell type. GSEA revealed that endothelial cells were enriched for upregulated IFN-g response genes when comparing treated cells to both untreated cells and cells treated after CD4+ T cell depletion. Functional analysis showed that knocking out IFNgR1 in endothelial cells inhibited treatment response. Together, these results indicated that IFN-g signaling in endothelial cells is a key mediator of ICB induced anti-tumor activity.

5.
J Clin Invest ; 133(13)2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37279078

RESUMEN

Since the T-box transcription factors (TFs) T-BET and EOMES are necessary for initiation of NK cell development, their ongoing requirement for mature NK cell homeostasis, function, and molecular programming remains unclear. To address this, T-BET and EOMES were deleted in unexpanded primary human NK cells using CRISPR/Cas9. Deleting these TFs compromised in vivo antitumor response of human NK cells. Mechanistically, T-BET and EOMES were required for normal NK cell proliferation and persistence in vivo. NK cells lacking T-BET and EOMES also exhibited defective responses to cytokine stimulation. Single-cell RNA-Seq revealed a specific T-box transcriptional program in human NK cells, which was rapidly lost following T-BET and EOMES deletion. Further, T-BET- and EOMES-deleted CD56bright NK cells acquired an innate lymphoid cell precursor-like (ILCP-like) profile with increased expression of the ILC-3-associated TFs RORC and AHR, revealing a role for T-box TFs in maintaining mature NK cell phenotypes and an unexpected role of suppressing alternative ILC lineages. Our study reveals the critical importance of sustained EOMES and T-BET expression to orchestrate mature NK cell function and identity.


Asunto(s)
Inmunidad Innata , Proteínas de Dominio T Box , Humanos , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Células Asesinas Naturales/metabolismo , Factores de Transcripción/metabolismo , Citocinas/metabolismo
6.
Gastro Hep Adv ; 2(4): 558-572, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37293574

RESUMEN

BACKGROUND AND AIMS: Polymorphisms near the membrane bound O-acyltransferase domain containing 7 (MBOAT7) genes are associated with worsened nonalcoholic fatty liver (NASH), and nonalcoholic fatty liver disease (NAFLD)/NASH may decrease MBOAT7 expression independent of these polymorphisms. We hypothesized that enhancing MBOAT7 function would improve NASH. METHODS: Genomic and lipidomic databases were mined for MBOAT7 expression and hepatic phosphatidylinositol (PI) abundance in human NAFLD/NASH. Male C57BL6/J mice were fed either choline-deficient high-fat diet or Gubra Amylin NASH diet and subsequently infected with adeno-associated virus expressing MBOAT7 or control virus. NASH histological scoring and lipidomic analyses were performed to assess MBOAT7 activity, hepatic PI, and lysophosphatidylinositol (LPI) abundance. RESULTS: Human NAFLD/NASH decreases MBOAT7 expression and hepatic abundance of arachidonate-containing PI. Murine NASH models display subtle changes in MBOAT7 expression, but significantly decreased activity. After MBOAT7 overexpression, liver weights, triglycerides, and plasma alanine and aspartate transaminase were modestly improved by MBOAT7 overexpression, but NASH histology was not improved. Despite confirmation of increased activity with MBOAT7 overexpression, content of the main arachidonoylated PI species was not rescued by MBOAT7 although the abundance of many PI species was increased. Free arachidonic acid was elevated but the MBOAT7 substrate arachidonoyl-CoA was decreased in NASH livers compared to low-fat controls, likely due to the decreased expression of long-chain acyl-CoA synthetases. CONCLUSION: Results suggest decreased MBOAT7 activity plays a role in NASH, but MBOAT7 overexpression fails to measurably improve NASH pathology potentially due to the insufficient abundance of its arachidonoyl-CoA substrate.

7.
bioRxiv ; 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37034778

RESUMEN

To explore mechanisms of response to combined PD-1/CTLA-4 immune checkpoint blockade (ICB) treatment in individual cell types, we generated scRNA-seq using a mouse model of invasive urothelial carcinoma with three conditions: untreated tumor, treated tumor, and tumor treated after CD4+ T cell depletion. After classifying tumor cells based on detection of somatic variants and assigning non-tumor cell types using SingleR, we performed differential expression analysis, overrepresentation analysis, and gene set enrichment analysis (GSEA) within each cell type. GSEA revealed that endothelial cells were enriched for upregulated IFN-g response genes when comparing treated cells to both untreated cells and cells treated after CD4+ T cell depletion. Functional analysis showed that knocking out IFNgR1 in endothelial cells inhibited treatment response. Together, these results indicated that IFN-g signaling in endothelial cells is a key mediator of ICB induced anti-tumor activity.

8.
Sci Rep ; 12(1): 17732, 2022 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-36273232

RESUMEN

Circulating tumor DNA (ctDNA) in peripheral blood has been used to predict prognosis and therapeutic response for triple-negative breast cancer (TNBC) patients. However, previous approaches typically use large comprehensive panels of genes commonly mutated across all breast cancers. Given the reduction in sequencing costs and decreased turnaround times associated with panel generation, the objective of this study was to assess the use of custom micro-panels for tracking disease and predicting clinical outcomes for patients with TNBC. Paired tumor-normal samples from patients with TNBC were obtained at diagnosis (T0) and whole exome sequencing (WES) was performed to identify somatic variants associated with individual tumors. Custom micro-panels of 4-6 variants were created for each individual enrolled in the study. Peripheral blood was obtained at baseline, during Cycle 1 Day 3, at time of surgery, and in 3-6 month intervals after surgery to assess variant allele fraction (VAF) at different timepoints during disease course. The VAF was compared to clinical outcomes to evaluate the ability of custom micro-panels to predict pathological response, disease-free intervals, and patient relapse. A cohort of 50 individuals were evaluated for up to 48 months post-diagnosis of TNBC. In total, there were 33 patients who did not achieve pathological complete response (pCR) and seven patients developed clinical relapse. For all patients who developed clinical relapse and had peripheral blood obtained ≤ 6 months prior to relapse (n = 4), the custom ctDNA micro-panels identified molecular relapse at an average of 4.3 months prior to clinical relapse. The custom ctDNA panel results were moderately associated with pCR such that during disease monitoring, only 11% of patients with pCR had a molecular relapse, whereas 47% of patients without pCR had a molecular relapse (Chi-Square; p-value = 0.10). In this study, we show that a custom micro-panel of 4-6 markers can be effectively used to predict outcomes and monitor remission for patients with TNBC. These custom micro-panels show high sensitivity for detecting molecular relapse in advance of clinical relapse. The use of these panels could improve patient outcomes through early detection of relapse with preemptive intervention prior to symptom onset.


Asunto(s)
ADN Tumoral Circulante , Neoplasias de la Mama Triple Negativas , Humanos , ADN Tumoral Circulante/genética , Neoplasias de la Mama Triple Negativas/diagnóstico , Neoplasias de la Mama Triple Negativas/genética , Biomarcadores de Tumor/genética , Recurrencia Local de Neoplasia/patología , Pronóstico
9.
Sci Transl Med ; 14(633): eabm1375, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35196021

RESUMEN

Natural killer (NK) cells are innate lymphoid cells that eliminate cancer cells, produce cytokines, and are being investigated as a nascent cellular immunotherapy. Impaired NK cell function, expansion, and persistence remain key challenges for optimal clinical translation. One promising strategy to overcome these challenges is cytokine-induced memory-like (ML) differentiation, whereby NK cells acquire enhanced antitumor function after stimulation with interleukin-12 (IL-12), IL-15, and IL-18. Here, reduced-intensity conditioning (RIC) for HLA-haploidentical hematopoietic cell transplantation (HCT) was augmented with same-donor ML NK cells on day +7 and 3 weeks of N-803 (IL-15 superagonist) to treat patients with relapsed/refractory acute myeloid leukemia (AML) in a clinical trial (NCT02782546). In 15 patients, donor ML NK cells were well tolerated, and 87% of patients achieved a composite complete response at day +28, which corresponded with clearing high-risk mutations, including TP53 variants. NK cells were the major blood lymphocytes for 2 months after HCT with 1104-fold expansion (over 1 to 2 weeks). Phenotypic and transcriptional analyses identified donor ML NK cells as distinct from conventional NK cells and showed that ML NK cells persisted for over 2 months. ML NK cells expressed CD16, CD57, and high granzyme B and perforin, along with a unique transcription factor profile. ML NK cells differentiated in patients had enhanced ex vivo function compared to conventional NK cells from both patients and healthy donors. Overall, same-donor ML NK cell therapy with 3 weeks of N-803 support safely augmented RIC haplo-HCT for AML.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Leucemia Mieloide Aguda , Humanos , Inmunidad Innata , Interleucina-15 , Células Asesinas Naturales , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/terapia
10.
Cancer Discov ; 12(1): 154-171, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34610950

RESUMEN

Despite some success in secondary brain metastases, targeted or immune-based therapies have shown limited efficacy against primary brain malignancies such as glioblastoma (GBM). Although the intratumoral heterogeneity of GBM is implicated in treatment resistance, it remains unclear whether this diversity is observed within brain metastases and to what extent cancer cell-intrinsic heterogeneity sculpts the local immune microenvironment. Here, we profiled the immunogenomic state of 93 spatially distinct regions from 30 malignant brain tumors through whole-exome, RNA, and T-cell receptor sequencing. Our analyses identified differences between primary and secondary malignancies, with gliomas displaying more spatial heterogeneity at the genomic and neoantigen levels. In addition, this spatial diversity was recapitulated in the distribution of T-cell clones in which some gliomas harbored highly expanded but spatially restricted clonotypes. This study defines the immunogenomic landscape across a cohort of malignant brain tumors and contains implications for the design of targeted and immune-based therapies against intracranial malignancies. SIGNIFICANCE: This study describes the impact of spatial heterogeneity on genomic and immunologic characteristics of gliomas and brain metastases. The results suggest that gliomas harbor significantly greater intratumoral heterogeneity of genomic alterations, neoantigens, and T-cell clones than brain metastases, indicating the importance of multisector analysis for clinical or translational studies.This article is highlighted in the In This Issue feature, p. 1.


Asunto(s)
Neoplasias Encefálicas/patología , Glioblastoma/secundario , Receptores de Antígenos de Linfocitos T/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/inmunología , Genómica , Glioblastoma/genética , Glioblastoma/inmunología , Humanos , Inmunoterapia , Metástasis de la Neoplasia , Microambiente Tumoral , Secuenciación del Exoma
11.
Blood ; 139(11): 1670-1683, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-34871371

RESUMEN

Pediatric and young adult (YA) patients with acute myeloid leukemia (AML) who relapse after allogeneic hematopoietic cell transplantation (HCT) have an extremely poor prognosis. Standard salvage chemotherapy and donor lymphocyte infusions (DLIs) have little curative potential. Previous studies showed that natural killer (NK) cells can be stimulated ex vivo with interleukin-12 (IL-12), -15, and -18 to generate memory-like (ML) NK cells with enhanced antileukemia responses. We treated 9 pediatric/YA patients with post-HCT relapsed AML with donor ML NK cells in a phase 1 trial. Patients received fludarabine, cytarabine, and filgrastim followed 2 weeks later by infusion of donor lymphocytes and ML NK cells from the original HCT donor. ML NK cells were successfully generated from haploidentical and matched-related and -unrelated donors. After infusion, donor-derived ML NK cells expanded and maintained an ML multidimensional mass cytometry phenotype for >3 months. Furthermore, ML NK cells exhibited persistent functional responses as evidenced by leukemia-triggered interferon-γ production. After DLI and ML NK cell adoptive transfer, 4 of 8 evaluable patients achieved complete remission at day 28. Two patients maintained a durable remission for >3 months, with 1 patient in remission for >2 years. No significant toxicity was experienced. This study demonstrates that, in a compatible post-HCT immune environment, donor ML NK cells robustly expand and persist with potent antileukemic activity in the absence of exogenous cytokines. ML NK cells in combination with DLI present a novel immunotherapy platform for AML that has relapsed after allogeneic HCT. This trial was registered at https://clinicaltrials.gov as #NCT03068819.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Leucemia Mieloide Aguda , Niño , Trasplante de Células Madre Hematopoyéticas/métodos , Humanos , Células Asesinas Naturales , Leucemia Mieloide Aguda/terapia , Trasplante Homólogo , Donante no Emparentado
12.
Breast Cancer Res Treat ; 189(1): 187-202, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34173924

RESUMEN

PURPOSE: Patients with triple-negative breast cancer (TNBC) who do not achieve pathological complete response (pCR) following neoadjuvant chemotherapy have a high risk of recurrence and death. Molecular characterization may identify patients unlikely to achieve pCR. This neoadjuvant trial was conducted to determine the pCR rate with docetaxel and carboplatin and to identify molecular alterations and/or immune gene signatures predicting pCR. EXPERIMENTAL DESIGN: Patients with clinical stages II/III TNBC received 6 cycles of docetaxel and carboplatin. The primary objective was to determine if neoadjuvant docetaxel and carboplatin would increase the pCR rate in TNBC compared to historical expectations. We performed whole-exome sequencing (WES) and immune profiling on pre-treatment tumor samples to identify alterations that may predict pCR. Thirteen matching on-treatment samples were also analyzed to assess changes in molecular profiles. RESULTS: Fifty-eight of 127 (45.7%) patients achieved pCR. There was a non-significant trend toward higher mutation burden for patients with residual cancer burden (RCB) 0/I versus RCB II/III (median 80 versus 68 variants, p 0.88). TP53 was the most frequently mutated gene, observed in 85.7% of tumors. EGFR, RB1, RAD51AP2, SDK2, L1CAM, KPRP, PCDHA1, CACNA1S, CFAP58, COL22A1, and COL4A5 mutations were observed almost exclusively in pre-treatment samples from patients who achieved pCR. Seven mutations in PCDHA1 were observed in pre-treatment samples from patients who did not achieve pCR. Several immune gene signatures including IDO1, PD-L1, interferon gamma signaling, CTLA4, cytotoxicity, tumor inflammation signature, inflammatory chemokines, cytotoxic cells, lymphoid, PD-L2, exhausted CD8, Tregs, and immunoproteasome were upregulated in pre-treatment samples from patients who achieved pCR. CONCLUSION: Neoadjuvant docetaxel and carboplatin resulted in a pCR of 45.7%. WES and immune profiling differentiated patients with and without pCR. TRIAL REGISTRATION: Clinical trial information: NCT02124902, Registered 24 April 2014 & NCT02547987, Registered 10 September 2015.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Carboplatino/uso terapéutico , Docetaxel/uso terapéutico , Femenino , Humanos , Terapia Neoadyuvante , Recurrencia Local de Neoplasia , Resultado del Tratamiento , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética
13.
Anticancer Res ; 29(7): 2427-35, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19596910

RESUMEN

The objective of this study was to discover whether the peptides LRMK and LRMK-Ava linked to the N-terminus of peptides HER-2 (774-788) and HER-2 (776-788), respectively, help differentiation of E75-TCR(+)CD8(+) cells. Activation was quantified in terms of proliferation of E75-TCR(+)CD8(+) cells expressing high, medium and low density amounts of the specific TCR. Differentiation to functional CD8(+) cells was quantified as induction of Perforin (Perf), the lytic-enzyme which mediates the effector function of CD8(+) cells, in E75-TCR(+)CD8(+) cells. Peripheral blood mononuclear cells (PBMCs) of 3 patients activated with E75(+)AE-37 and E75(+)AE-47 more greatly increased the number of E75-TCR(Hi) CD8(+)Perf(+) cells than PBMCs activated by AE-47 alone or AE-47(+) E75. E75 plus cytokines and cytokines alone activated more E75-TCR(Low) cells than did AE-37 and AE-47. E75(+) AE-37 and AE-37 also induced differentiation of small- and medium-size activated CD8(+) cells from BRC ascites, in allogeneic activation, to Perf(+) cells. Preferential differentiation of E75-TCR(+)CD8(+)Perf(+) cells in distinct patients by AE-37 and AE-47 indicates that cancer vaccines will benefit from such correct individual and disease-associated help. Additional studies using the natural peptides p776 and F7 are needed to understand whether the LRMK-(Ava) tetra-, or pentamer augments or inhibits differentiation of CD8(+) cells, compared with native, natural HER-2 peptides and/or protects CD8(+) cells activated by E75 and by other HLA-I bound peptides from death. Our findings also develop a model for uniform quantification of differentiated CD8(+) effectors.


Asunto(s)
Linfocitos T CD8-positivos/citología , Diferenciación Celular/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Perforina/metabolismo , Receptor ErbB-2/química , Receptores de Antígenos de Linfocitos T/metabolismo , Ensayo de Inmunoadsorción Enzimática , Humanos , Técnicas In Vitro , Activación de Linfocitos
15.
J Immunol ; 169(7): 3545-54, 2002 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-12244144

RESUMEN

To design side chain variants for modulation of immunogenicity, we modeled the complex of the HLA-A2 molecule with an immunodominant peptide, E75, from the HER-2/neu protooncogene protein recognized by CTL. We identified the side chain orientation of E75. We modified E75 at the central Ser(5) (E75 wild-type), which points upward, by removing successively the HO (variant S5A) and the CH2-OH (variant S5G). Replacement of the OH with an aminopropyl (CH2)3-NH3 (variant S5K) maintained a similar upward orientation of the side chain. S5A and S5G were stronger stimulators while S5K was a weaker stimulator than E75 for induction of lytic function, indicating that the OH group and its extension hindered TCR activation. S5K-CTL survived longer than did CTL induced by E75 and the variants S5A and S5G, which became apoptotic after restimulation with the inducer. S5K-CTL also recognized E75 endogenously presented by the tumor by IFN-gamma production and specific cytolysis. S5K-CTL expanded at stimulation with E75 or with E75 plus agonistic anti-Fas mAb. Compared with S5K-CTL that had been restimulated with the inducer S5K, S5K-CTL stimulated with wild-type E75 expressed higher levels of E75(+) TCR and BCL-2. Activation of human tumor-reactive CTL by weaker agonists than the nominal Ag, followed by expansion with the nominal Ag, is a novel approach to antitumor CTL development. Fine tuning of activation of tumor-reactive CTL by weak agonists, designed by molecular modeling, may circumvent cell death or tolerization induced by tumor Ag, and thus, may provide a novel approach to the rational design of human cancer vaccines.


Asunto(s)
Sustitución de Aminoácidos/inmunología , Antígenos de Neoplasias/inmunología , Citotoxicidad Inmunológica , Epítopos de Linfocito T/inmunología , Genes erbB-2/inmunología , Antígeno HLA-A2/inmunología , Fragmentos de Péptidos/inmunología , Linfocitos T Citotóxicos/inmunología , Adyuvantes Inmunológicos/síntesis química , Adyuvantes Inmunológicos/farmacología , Alanina/genética , Presentación de Antígeno , Apoptosis/inmunología , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Adhesión Celular/inmunología , Línea Celular , Supervivencia Celular/inmunología , Epítopos de Linfocito T/química , Epítopos de Linfocito T/farmacología , Glicina/genética , Antígeno HLA-A2/química , Humanos , Interferón gamma/biosíntesis , Activación de Linfocitos , Lisina/genética , Modelos Moleculares , Fragmentos de Péptidos/síntesis química , Fragmentos de Péptidos/farmacología , Serina/genética , Linfocitos T Citotóxicos/citología , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...