Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Vet World ; 17(6): 1216-1226, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39077441

RESUMEN

Background and Aim: Ruminant enteric methane (CH4) is one of the largest sources of greenhouse gases that contribute to global warming. To minimize environmental harm caused by ruminants' CH4 production, natural substances can be used to suppress it. Chitosan from crustacean sources had been known to obstruct CH4 generation in the rumen. About 18% of silkworm pupae is chitin, but little is known about the impact of silkworm pupae chitosan on rumen methanogenesis. This study investigated the efficacy of the silkworm chitosan extraction method and its impact on rumen fermentation, methanogenesis, and microbial growth in vitro. Materials and Methods: This study employed a randomized complete block design featuring five treatments and four batches for rumen incubation as the blocking factor. In this study, five treatments were implemented: Control (CO) (basal diet with no added chitosan), basal diet with 6% chitosan from the Chinese Silkworm strain 804 (CHI804), basal diet with 6% chitosan from the PS 01 Hybrid Silkworm strain (CHIPS01), basal diet with 6% chitosan from the Hybrid F1 Japanese 102 × Chinese 202 races (CHIJC02), and basal diet with 6% commercial shrimp shell chitosan as the positive control (CHICOMM). The in vitro experiments assessed digestibility, pH, total gas generation, CH4 production, ammonia nitrogen (NH3-N), and short-chain fatty acid levels, along with microbial population. Data were analyzed using a general linear model followed by Duncan's test when applicable. Results: A significant effect on dry matter digestibility (DMD), total gas production, CH4, NH3-N, and rumen microbial populations (Methanogens, Ruminoccocus albus, Ruminoccocus flavefaciens, Selonomonas ruminantium, Butyrivibrio fibrisolvens, Streptoccocus bovis, Prevotella spp., and Bacteroides spp.) was observed (p < 0.05). The extracted chitosan (CHIJC02) used in this study exhibited a similar quality to that of commercial chitosan (CHICOMM). CHI804 treatment could reduce gas production, NH3-N production, and B. fibrisolvens population significantly (p < 0.05), while CHIJC02 could reduce CH4 production, methanogen population, acetate (C2) production, and increase propionate (C3) production significantly (p < 0.05). CHIJC02 and CHICOMM treatments could also increase the population of R. flavefaciens, S. ruminantium, and Bacteroides spp. significantly (p < 0.05). Chitosan addition significantly (p < 0.05) reduced DMD but did not impact organic matter digestibility or pH. Conclusion: The extracted chitosan mimics commercial chitosan in physico-chemical properties. Chitosan derived from Japanese and Chinese F1 hybrid silkworm strains demonstrated superior capacity for inhibiting CH4 generation compared to commercial chitosan. The quality and effects on methanogenesis, rumen fermentation, and rumen microbial populations can differ depending on the origin of chitosan.

2.
Animals (Basel) ; 14(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38672383

RESUMEN

The present meta-analysis aimed to determine the underlying effects of different saponins extracted from different sources on the production performance, milk yield, digestibility, rumen fermentation, blood metabolites, and nitrogen utilization of ruminants. A total of 26 papers comprising 66 in vivo studies (148 data points of dietary treatments) were evaluated in the present study. The databases were statistically analyzed using the mixed model procedure of SAS, where experiments considered random effects and tannin-related factors were treated as fixed effects. Statistical procedures were then continued in comparing different sources of saponin extract through Mixed Model analysis, where experiments were also random factors and sources of saponin extract were fixed factors. The evidence revealed in the present meta-analysis that saponin supplementation of up to 40 g/kg DM appears to have no detrimental impact on feed intake across ruminant types, suggesting that it does not significantly affect diet palatability. However, the results indicated that there are species-specific responses to saponin supplementation, particularly in relation to palatability and nutrient absorption efficiency, with larger ruminants being better able to tolerate the bitterness induced by saponin extracts. Furthermore, the study found that saponin extracts can influence nutrient digestibility and rumen fermentation dynamics, with different effects observed in large and small ruminants. While some saponin extracts can enhance average daily weight gain and milk yield, others can have adverse effects, highlighting the importance of considering both saponin sources and animal physiological condition when developing nutritional strategies. Additionally, optimization of ruminant production by utilizing saponin extracts is necessary to avoid negative health implications, such as increased blood creatinine levels. Different saponin extracts utilization in ruminant nutrition and environmental management, have a distinct understanding associated to their various bioactive properties. However, among the saponin sources, saponin extracted from Quilaja saponaria is more likely to improve large ruminant production performance while maintaining ruminant health and metabolism, but negatively affect small ruminants. Further research is needed to unravel the intricate effects of different saponin sources on ruminant health and productivity, emphasizing the importance of tailored dietary strategies that consider the unique physiological and metabolic characteristics of the target livestock.

3.
Vet World ; 16(4): 811-819, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37235161

RESUMEN

Background and Aim: Resistant starch (RS) is difficult to digest in the digestive tract. This study aimed to evaluate the effects of heat-moisture treatment (HMT) on RS in cassava and examined its impact on rumen fermentation. Materials and Methods: Cassava flour was used as a raw material and used in a randomized block design with four different cycles of HMT as the treatments and four different rumen incubations in vitro as blocks. Treatments included: HMT0: without HMT (control), HMT1: one HMT cycle, HMT2: two HMT cycles, and HMT3: three HMT cycles. Heat-moisture treatment processes were performed at 121°C for 15 min and then freezing at -20°C for 6 h. Analyzed HMT cassava starch characteristics included components, digestibility, and physicochemical properties. In in vitro rumen fermentation studies (48 h incubation) using HMT cassava, digestibility, gas production, methane, fermentation profiles, and microbial population assessments were performed. Results: Heat-moisture treatment significantly reduced (p < 0.05) starch, amylopectin, rapidly digestible starch (RDS), and slowly digestible starch levels. In contrast, amylose, reducing sugars, very RDS, RS, and protein digestion levels were significantly increased (p < 0.05). Additionally, a reduced crystallinity index and an increased amorphous index were observed in starch using Fourier-transform infrared analyses, while a change in crystalline type from type A to type B, along with a reduction in crystallinity degree, was observed in X-ray diffraction analyses. Heat-moisture treatment significantly (p < 0.05) reduced rumen dry matter (DM) degradation, gas production, methane (CH4 for 12 h), volatile fatty acid (VFA), and propionate levels. In addition, acetate, butyrate, and acetate/propionate ratios, as well as population of Streptococcus bovis and Bacteroides were significantly increased (p < 0.05). However, pH, ammonia, and organic matter digestibility were unaffected (p > 0.05) by HMT. Conclusion: Cassava HMT altered starch characteristics, significantly increased RS, which appeared to limit rumen digestion activity, decreased rumen DM degradation, gas production, VFAs, and CH4 production for 12 h, but increased S. bovis and Bacteroides levels.

4.
Front Microbiol ; 14: 1063333, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36910222

RESUMEN

Silage fermentation is naturally carried out by lactic acid bacteria (LAB) to mainly produce lactic acid (LA) and other organic acids as preservatives. Along with fermentation time, the growth of LAB will replace and suppress undesirable microorganisms. This meta-analysis study aimed to explore silage microbiome differentiated by LAB inoculants and type of raw materials. A total of 37 articles with 185 studies and 475 datasets were used for building up the meta-database. Data were subjected to the mixed model methodology. The parameters observed were silage quality and silage microbiome post-ensiling process. Results revealed that four bacterial genera along with Weissella dominated the post-ensiling process. The addition of lactic acid inoculants in the silage has increased the abundance of Lactobacillus spp. and decreased the Shannon index significantly. Moreover, the abundance of both L. plantarum and L. buchneri increased, and subsequently, Weissella, Pseudomonas, Proteobacteria, pH value, ammoniacal nitrogen (NH3-N), coliforms, and the yeasts were decreased significantly due to the addition of LAB inoculants in silage (p < 0.05). Environmental factors such as temperature affected the existence of Pseudomonas, Exiguobacterium, and Acinetobacter. However, the dry matter, LA, acetic acid (AA), the ratio of LA to AA, and the LAB population were enhanced significantly (p < 0.05). Among the LAB types, the lowest abundance of Pseudomonas was due to the LAB group, while the lowest abundance of Weissella and Proteobacteria was due to the addition of the combined LAB group. In conclusion, the addition of LAB is effectively enhancing the silage microbiome and silage quality by altering bacterial diversity and the metabolic products of the silage materials for safe preservation.

5.
Vet World ; 15(8): 1969-1974, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36313835

RESUMEN

Background and Aim: Lactiplantibacillus plantarum is one of the lactic acid bacteria that is often used as probiotics. This study aimed to evaluate the effects of Lactiplantibacillus plantarum TSD10 as a probiotic on rumen fermentation and microbial population in Ongole breed cattle. Materials and Methods: This study adopted an experimental crossover design, using three-fistulated Ongole breed cattle. Treatments were as follows: T0, control without probiotic; T1, 10 mL probiotic/day; T2, 20 mL probiotic/day; and T3, 30 mL probiotic/day. The basal diet of the cattle comprised 70% concentrate: 30% elephant grass (Pennisetum purpureum). The concentration of probiotic used was 1.8 × 1010 colony-forming unit (CFU)/mL. Results: We observed significantly lower acetate production compared with control (64.12%), the lowest values being in the T3 group (55.53%). Contrarily, propionate production significantly increased from 18.67% (control) to 23.32% (T2). All treatments yielded significantly lower acetate-propionate ratios than control (3.44), with the lowest ratio in the T3 group (2.41). The protozoal number decreased on probiotic supplementation, with the lowest population recorded in the T2 group (5.65 log cells/mL). The population of specific rumen bacteria was estimated using a quantitative polymerase chain reaction. We found that the population of L. plantarum, Ruminococcus flavefaciens, and Treponema bryantii, did not change significantly on probiotic supplementation, While that of Ruminococcus albus increased significantly from 9.88 log CFU/mL in controls to 12.62 log CFU/mL in the T2 group. Conclusion: This study showed that the optimum dosage of L. plantarum TSD10 as a probiotic was 20 mL/day. The effect of L. plantarum as a probiotic on feed degradation in rumen was not evaluated in this experiment. Therefore, the effect of L. plantarum as a probiotic on feed degradation should be performed in further studies.

6.
Anim Sci J ; 93(1): e13765, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36065082

RESUMEN

Extracts of Acacia and Quebracho have been used as a feed additive in ruminant diets; the effects, however, have been varied. This study used a meta-analysis approach to evaluate the use of those extracts on nutrient utilization, performance, and methane production of ruminants. A database was developed from 37 published papers comprising 152 dietary treatments. The result showed that a higher concentration of tannins was associated with a decrease (p < 0.05) in nutrient intake and digestibility. An increasing tannin concentration was negatively correlated with ammonia, acetic acid, and the ratio of acetic to propionic acid. Methane production decreased (p < 0.01) with the increasing tannin concentration. Nitrogen (N) balance parameters were not affected by the tannin concentrations, but fecal N excretion increased (p < 0.01) as the tannin concentration increased. The relationships between the Acacia and Quebracho and the changes in organic matter intake, milk fat concentration, butyric acid, valeric acid, and methane production were significantly different. In conclusion, it is possible to use both condensed tannins (CT) extracts as a methane emission mitigation without impairing the ruminant performance. Furthermore, the Quebracho showed more pronounced to decrease ruminal protein degradation and lower methane emission than the Acacia.


Asunto(s)
Acacia , Taninos , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Suplementos Dietéticos/análisis , Metano/metabolismo , Nutrientes/análisis , Extractos Vegetales , Rumen/metabolismo , Rumiantes/metabolismo
7.
Animals (Basel) ; 11(11)2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34828048

RESUMEN

The objective of this meta-analysis was to elucidate whether there are general underlying effects of dietary tannin extract supplementation on rumen fermentation, digestibility, methane production, performance, as well as N utilisation in ruminants. A total of 70 papers comprised of 348 dietary treatments (from both in vivo and in situ studies) were included in the study. The database was then statistically analysed by the mixed model methodology, in which different experiments were considered as random effects and tannin-related factors were treated as fixed effects. The results revealed that an increased level of tannin extract inclusion in the diet lowered ruminant intake, digestibility, and production performance. Furthermore, the evidence also showed that an increased level of tannin extract decreased animal N utilisation where most of rumen by-pass protein was not absorbed well in the small intestine and directly excreted in the faeces. Due to the type of tannin extract, HT is more favourable to maintain nutrient intake, digestibility, and production performance and to mitigate methane production instead of CT, particularly when supplemented at low (<1%) to moderate (~3%) levels.

8.
Anim Sci J ; 92(1): e13524, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33629442

RESUMEN

This study aimed to evaluate the effects of ensiling fruit byproducts on their chemical composition and in vitro ruminal fermentation. Persimmon peel (PP), white grape pomace (WGP), and red grape pomace (RGP) were ensiled for 1, 2, 4, and 8 weeks. Fresh and ensiled PP, WGP, and RGP were used for in vitro rumen fermentation with or without polyethylene glycol (PEG). The non-fiber carbohydrate (NFC) content of the byproducts decreased after ensiling, especially for PP. The total tannin content was not changed after ensiling for up to 4 weeks for all byproducts. However, the soluble tannin content in PP decreased but that in grape pomaces was unaffected by ensiling. Gas production, total volatile fatty acid concentration, and methane production by in vitro rumen fermentation for PP and WGP were reduced by ensiling, and increased by adding PEG, except for gas production from the PP silage. These results indicated that changes in the fractions of carbohydrate and tannins during the ensiling process were different between PP and grape pomace. Even though the insolubilization of tannins in PP during ensiling reduced its inhibitory effect on ruminal fermentability, the ensiling PP seemed to remain the ability to mitigate methanogenesis in the rumen.


Asunto(s)
Diospyros/química , Fermentación/fisiología , Almacenamiento de Alimentos/métodos , Tecnología de Alimentos/métodos , Rumen/metabolismo , Ensilaje/análisis , Taninos/análisis , Vitis/química , Animales , Carbohidratos/análisis , Técnicas In Vitro , Metano/metabolismo , Polietilenglicoles , Factores de Tiempo
9.
Anim Sci J ; 91(1): e13403, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32557958

RESUMEN

The effects of inclusion of persimmon peel (PP) in total mixed ration (TMR) silage on its nutrient composition, tannin content, and in vitro ruminal fermentation were studied. Four types of TMR silages containing 0, 50, 100, and 150 g/kg of PP on a dry matter basis were prepared. The dietary contents of non-fiber carbohydrate (NFC) decreased, while soluble protein fraction increased after ensiling of the TMR. In the TMR silages, the content of insoluble tannin increased (p < .05) with increasing PP level. The fraction of soluble protein decreased linearly (p < .01), while that of neutral detergent insoluble protein increased linearly (p < .01) with increasing the PP level in the TMR silages. The total gas and methane yields from the in vitro rumen fermentation of the TMR silages were lower (p < .01) than those of pre-ensiled TMR and declined linearly (p < .01) with increasing PP level. These results indicate that adding PP to TMR silage may resist the breakdown of dietary protein during the ensiling process, although the ruminal fermentability of TMR possibly decreased after ensiling due to the loss of NFC.


Asunto(s)
Diospyros , Fermentación , Rumen/fisiología , Ensilaje/análisis , Taninos/análisis , Animales , Biocombustibles/análisis , Carbohidratos/análisis , Proteínas en la Dieta/análisis , Técnicas In Vitro , Metano/análisis , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...