Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Res ; 249: 118291, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38301757

RESUMEN

Organophosphorus adulteration in the environment creates terrestrial and aquatic pollution. It causes acute and subacute toxicity in plants, humans, insects, and animals. Due to the excessive use of organophosphorus pesticides, there is a need to develop environmentally friendly, economical, and bio-based strategies. The microbiomes, that exist in the soil, can reduce the devastating effects of organophosphates. The use of cell-free enzymes and yeast is also an advanced method for the degradation of organophosphates. Plant-friendly bacterial strains, that exist in the soil, can help to degrade these contaminants by oxidation-reduction reactions, enzymatic breakdown, and adsorption. The bacterial strains mostly from the genus Bacillus, Pseudomonas, Acinetobacter, Agrobacterium, and Rhizobium have the ability to hydrolyze the bonds of organophosphate compounds like profenofos, quinalphos, malathion, methyl-parathion, and chlorpyrifos. The native bacterial strains also promote the growth abilities of plants and help in detoxification of organophosphate residues. This bioremediation technique is easy to use, relatively cost-effective, very efficient, and ensures the safety of the environment. This review covers the literature gap by describing the major effects of organophosphates on the ecosystem and their bioremediation by using native bacterial strains.


Asunto(s)
Biodegradación Ambiental , Ecosistema , Compuestos Organofosforados , Compuestos Organofosforados/toxicidad , Compuestos Organofosforados/metabolismo , Compuestos Organofosforados/química , Residuos de Plaguicidas/toxicidad , Bacterias/metabolismo , Bacterias/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/química , Contaminantes del Suelo/metabolismo
2.
PeerJ ; 11: e15644, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37645014

RESUMEN

Maize is one of the major crops in the world and the most productive member of the Gramineae family. Since cold stress affects the germination, growth, and productivity of corn seeds, the present study aimed to investigate the effect of seed biopriming with Trichoderma harzianum on the tolerance of two genotypes of maize seedlings to cold stress. This study was conducted in triplicates in factorial experiment with a complete randomized block design (CRBD). The study was conducted in the greenhouse and laboratory of the University of Mohaghegh Ardabili, Ardabil, Iran. Experimental factors include two cultivars (AR68 cold-resistant and KSC703 cold-sensitive maize cultivars), four pretreatment levels (control, biopriming with T. harzianum, exogenous T. harzianum, and hydropriming), and two levels of cold stress (control and cold at 5 °C) in a hydroponic culture medium. The present study showed that maize leaves' establishment rate and maximum fluorescence (Fm) are affected by triple effects (C*, P*, S). The highest establishment (99.66%) and Fm (994 units) rates were observed in the KP3 control treatment. Moreover, among the pretreatments, the highest (0.476 days) and the lowest (0.182 days) establishment rates were related to P0 and P3 treatments, respectively. Cultivar A showed higher chlorophyll a and b, carotenoid content, and establishment rate compared to cultivar K in both optimal and cold conditions. The highest root dry weight (11.84 units) was obtained in cultivar A with P3 pretreatment. The pretreatments with T. harzianum increased physiological parameters and seedling emergence of maize under cold and optimal stress conditions. Pretreatment and cultivar improved catalase activity in roots and leaves. Higher leaf and root catalase activity was observed in the roots and leaves of cultivar K compared to cultivar A. The cold treatment significantly differed in peroxidase activity from the control treatment. Cultivar K showed higher catalase activity than cultivar A. The main effects of pretreatment and cold on polyphenol oxidase activity and proline content showed the highest polyphenol oxidase activity and proline content in hydropriming (H) treatment. Cold treatment also showed higher polyphenol oxidase activity and proline content than cold-free conditions.


Asunto(s)
Respuesta al Choque por Frío , Zea mays , Catalasa , Clorofila A , Catecol Oxidasa
3.
Heliyon ; 9(3): e14193, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36950648

RESUMEN

This research was designed to analyze the interactive effects of Pseudomonas putida and salicylic acid on the growth of canola in stress and non-stress conditions. Salicylic acid is a phenolic derivative, that has a direct involvement in various plant stages like growth, and inflorescence. While Pseudomonas putida is a drought-tolerant strain having plant growth-promoting characteristics like phosphate solubilization, indole acetic acid, and catalase production. Combined application of Pseudomonas putida and salicylic acid has the ability to develop stress tolerance in plants and also improve growth of plants. They have significant (p < 0.05) effects on germination and morphological, physiological, and biochemical parameters. The plants that received the co-application of Pseudomonas putida and salicylic acid gave more significant results than their alone application. They showed enhanced germination percentage, germination index, promptness index and, seedling vigor index by 19%, 18%, 34% and, 27%, respectively. There was a substantial increase of 25%, 27%, and 39% in shoot length, root length, and leaf area, respectively. The synergistic effect of both treatments has caused a 14% and 12% increase in the Canola plants' relative water content and membrane stability index respectively. A substantial increase of 18% in proline content was observed by the inoculation of Pseudomonas putida, whereas proline content was increased by 28% by the exogenous application of salicylic acid. The content of flavonoids (39%) and phenol (40%) was significantly increased by the co-application. The increase in superoxide dismutase (46%), ascorbate peroxidase (43%), and glutathione (19%) were also significant. The present research demonstrated that the combined application of Pseudomonas putida and salicylic acid induces drought tolerance in canola and significantly improves its growth.

4.
Plants (Basel) ; 12(4)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36840109

RESUMEN

In the present study, SeNPs were synthesized using Melia azedarach leaf extracts and investigated for growth promotion in wheat under the biotic stress of spot blotch disease. The phytosynthesized SeNPs were characterized using UV-visible spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and Fourier-transformed infrared spectroscopy (FTIR). The in vitro efficacy of different concentrations of phytosynthesized SeNPs (i.e., 100 µg/mL, 150 µg/mL, 200 µg/mL, 250 µg/mL, and 300 µg/mL) was evaluated using the well diffusion method, which reported that 300 µg/mL showed maximum fungus growth inhibition. For in vivo study, different concentrations (10, 20, 30, and 40 mg/L) of SeNPs were applied exogenously to evaluate the morphological, physiological, and biochemical parameters under control conditions and determine when infection was induced. Among all treatments, 30 mg/L of SeNPs performed well and increased the plant height by 2.34% compared to the control and 30.7% more than fungus-inoculated wheat. Similarly, fresh plant weight and dry weight increased by 17.35% and 13.43% over the control and 20.34% and 52.48% over the fungus-treated wheat, respectively. In leaf surface area and root length, our findings were 50.11% and 10.37% higher than the control and 40% and 71% higher than diseased wheat, respectively. Plant physiological parameters i.e., chlorophyll a, chlorophyll b, and total chlorophyll content, were increased 14, 133, and 16.1 times over the control and 157, 253, and 42 times over the pathogen-inoculated wheat, respectively. Our findings regarding carotenoid content, relative water content, and the membrane stability index were 29-, 49-, and 81-fold higher than the control and 187-, 63-, and 48-fold higher than the negative control, respectively. In the case of plant biochemical parameters, proline, sugar, flavonoids, and phenolic contents were recorded at 6, 287, 11, and 34 times higher than the control and 32, 107, 33, and 4 times more than fungus-inoculated wheat, respectively. This study is considered the first biocompatible approach to evaluate the potential of green-synthesized SeNPs as growth-promoting substances in wheat under the spot blotch stress and effective management strategy to inhibit fungal growth.

5.
Front Microbiol ; 13: 905210, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35770168

RESUMEN

Salinity is one of the most damaging abiotic stresses due to climate change impacts that affect the growth and yield of crops, especially in lowland rice fields and coastal areas. This research aimed to isolate potential halotolerant plant growth-promoting rhizobacteria from different rhizo-microbiome and use them as effective bioinoculants to improve rice growth under salinity stress conditions. Bioassay using rice seedlings was performed in a randomized block design consisting of 16 treatments (control and 15 bacterial isolates) with three replications. Results revealed that isolates S3, S5, and S6 gave higher shoot height, root length, and plant dry weight compared with control (without isolates). Based on molecular characteristics, isolates S3 and S5 were identified as Pseudomonas stutzeri and Klebsiella pneumonia. These isolates were able to promote rice growth under salinity stress conditions as halotolerant plant growth-promoting rhizobacteria. These three potent isolates were found to produce indole-3-acetic acid and nitrogenase.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...