Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 9(1): 1405, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30723259

RESUMEN

Lung cancer remains the leading cause of cancer-related death, despite the advent of targeted therapies and immunotherapies. Therefore, it is crucial to identify novel molecular features unique to lung tumors. Here, we show that cyclopamine tartrate (CycT) strongly suppresses the growth of subcutaneously implanted non-small cell lung cancer (NSCLC) xenografts and nearly eradicated orthotopically implanted NSCLC xenografts. CycT reduces heme synthesis and degradation in NSCLC cells and suppresses oxygen consumption in purified mitochondria. In orthotopic tumors, CycT decreases the levels of proteins and enzymes crucial for heme synthesis, uptake, and oxidative phosphorylation (OXPHOS). CycT also decreases the levels of two regulators promoting OXPHOS, MYC and MCL1, and effectively alleviates tumor hypoxia. Evidently, CycT acts via multiple modes to suppress OXPHOS. One mode is to directly inhibit mitochondrial respiration/OXPHOS. Another mode is to inhibit heme synthesis and degradation. Both modes appear to be independent of hedgehog signaling. Addition of heme to NSCLC cells partially reverses the effect of CycT on oxygen consumption, proliferation, and tumorigenic functions. Together, our results strongly suggest that CycT suppress tumor growth in the lung by inhibiting heme metabolism and OXPHOS. Targeting heme metabolism and OXPHOS may be an effective strategy to combat lung cancer.


Asunto(s)
Carcinogénesis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Proteínas Hedgehog/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Mitocondrias/metabolismo , Tartratos/uso terapéutico , Alcaloides de Veratrum/uso terapéutico , Células A549 , Animales , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Proliferación Celular/efectos de los fármacos , Respiración de la Célula/efectos de los fármacos , Progresión de la Enfermedad , Femenino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Fosforilación Oxidativa/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Tartratos/farmacología , Carga Tumoral/efectos de los fármacos , Alcaloides de Veratrum/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Alzheimers Dement (N Y) ; 5: 27-37, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30723777

RESUMEN

INTRODUCTION: Heme is a central molecule in mitochondrial respiration and ATP generation in neuronal cells. Thus, we assessed the importance of altered heme metabolism in Alzheimer's disease (AD) pathogenesis. METHODS: To investigate the role of altered heme metabolism in AD, we identified heme-related proteins whose expression is altered in AD patients and mouse models exhibiting amyloid pathology. We detected the levels of proteins involved in heme synthesis, uptake, degradation, and function during neuronal differentiation and characterized the effects of Aß. RESULTS: We found that the expression levels of the rate-limiting heme synthetic enzyme ALAS1 and heme degradation enzyme HO-2 are selectively decreased in AD patients and mice. Aß selectively reduces the levels of HO-2 and heme degradation, which are elevated to support neuronal functions in fully differentiated neuronal cells. DISCUSSION: Our data show that lowered heme metabolism, particularly the decreased levels of heme degradation and HO-2, is likely a very early event in AD pathogenesis.

3.
Cell Biosci ; 8: 56, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30410721

RESUMEN

Contrary to Warburg's hypothesis, mitochondrial oxidative phosphorylation (OXPHOS) contributes significantly to fueling cancer cells. Several recent studies have demonstrated that radiotherapy-resistant and chemotherapy-resistant cancer cells depend on OXPHOS for survival and progression. Several cancers exhibit an increased risk in association with heme intake. Mitochondria are widely known to carry out oxidative phosphorylation. In addition, mitochondria are also involved in heme synthesis. Heme serves as a prosthetic group for several proteins that constitute the complexes of mitochondrial electron transport chain. Therefore, heme plays a pivotal role in OXPHOS and oxygen consumption. Further, lung cancer cells exhibit heme accumulation and require heme for proliferation and invasion in vitro. Abnormalities in mitochondrial biogenesis and mutations are implicated in cancer. This review delves into mitochondrial OXPHOS and lesser explored area of heme metabolism in lung cancer.

4.
Clin Transl Med ; 7(1): 8, 2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-29497871

RESUMEN

In this Correction, the authors would like to acknowledge that the original publication of the article "A holistic view of cancer bioenergetics: mitochondrial function and respiration play fundamental roles in the development and progression of diverse tumors" [1] was supported by CPRIT (Cancer Prevention & Research Institute of Texas) Grant RP160617.

5.
Oncotarget ; 9(3): 4090-4101, 2018 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-29423106

RESUMEN

Vascular disrupting agents (VDAs) represent a promising class of anti-cancer drugs for solid tumor treatment. Here, we aim to better understand the mechanisms underlying tumor reccurrence and treatment resistance following the administration of a VDA, combretastatin A-4 phosphate (CA4P). Firstly, we used photoacoustic tomography to noninvasively map the effect of CA4P on blood oxygen levels throughout subcutaneous non-small cell lung cancer (NSCLC) tumors in mice. We found that the oxygenation of peripheral tumor vessels was significantly decreased at 1 and 3 hours post-CA4P treatment. The oxygenation of the tumor core reduced significantly at 1 and 3 hours, and reached anoxia after 24 hours. Secondly, we examined the effect of CA4P on the levels of proteins involved in heme flux and function, which are elevated in lung tumors. Using immunohistochemistry, we found that CA4P substantially enhanced the levels of enzymes involved in heme biosynthesis, uptake, and degradation, as well as oxygen-utilizing hemoproteins. Furthermore, measurements of markers of mitochondrial function suggest that CA4P did not diminish mitochondrial function in resistant tumor cells. These results suggest that elevated levels of heme flux and function contribute to tumor regrowth and treatment resistance post-VDA administration.

6.
Clin Transl Med ; 5(1): 3, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26812134

RESUMEN

Since Otto Warburg made the first observation that tumor cells exhibit altered metabolism and bioenergetics in the 1920s, many scientists have tried to further the understanding of tumor bioenergetics. Particularly, in the past decade, the application of the state-of the-art metabolomics and genomics technologies has revealed the remarkable plasticity of tumor metabolism and bioenergetics. Firstly, a wide array of tumor cells have been shown to be able to use not only glucose, but also glutamine for generating cellular energy, reducing power, and metabolic building blocks for biosynthesis. Secondly, many types of cancer cells generate most of their cellular energy via mitochondrial respiration and oxidative phosphorylation. Glutamine is the preferred substrate for oxidative phosphorylation in tumor cells. Thirdly, tumor cells exhibit remarkable versatility in using bioenergetics substrates. Notably, tumor cells can use metabolic substrates donated by stromal cells for cellular energy generation via oxidative phosphorylation. Further, it has been shown that mitochondrial transfer is a critical mechanism for tumor cells with defective mitochondria to restore oxidative phosphorylation. The restoration is necessary for tumor cells to gain tumorigenic and metastatic potential. It is also worth noting that heme is essential for the biogenesis and proper functioning of mitochondrial respiratory chain complexes. Hence, it is not surprising that recent experimental data showed that heme flux and function are elevated in non-small cell lung cancer (NSCLC) cells and that elevated heme function promotes intensified oxygen consumption, thereby fueling tumor cell proliferation and function. Finally, emerging evidence increasingly suggests that clonal evolution and tumor genetic heterogeneity contribute to bioenergetic versatility of tumor cells, as well as tumor recurrence and drug resistance. Although mutations are found only in several metabolic enzymes in tumors, diverse mutations in signaling pathways and networks can cause changes in the expression and activity of metabolic enzymes, which likely enable tumor cells to gain their bioenergetic versatility. A better understanding of tumor bioenergetics should provide a more holistic approach to investigate cancer biology and therapeutics. This review therefore attempts to comprehensively consider and summarize the experimental data supporting our latest view of cancer bioenergetics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA