Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 8(1): 937, 2017 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-29038496

RESUMEN

The Hsp70 Ssb serves a dual role in de novo protein folding and ribosome biogenesis; however, the mechanism by which Ssb affects ribosome production is unclear. Here we establish that Ssb is causally linked to the regulation of ribosome biogenesis via the TORC1-Sch9 signaling pathway. Ssb is bound to Sch9 posttranslationally and required for the TORC1-dependent phosphorylation of Sch9 at T737. Also, Sch9 lacking phosphorylation at T737 displays significantly reduced kinase activity with respect to targets involved in the regulation of ribosome biogenesis. The absence of either Ssb or Sch9 causes enhanced ribosome aggregation. Particularly with respect to proper assembly of the small ribosomal subunit, SSB and SCH9 display strong positive genetic interaction. In combination, the data indicate that Ssb promotes ribosome biogenesis not only via cotranslational protein folding, but also posttranslationally via interaction with natively folded Sch9, facilitating access of the upstream kinase TORC1 to Sch9-T737.The yeast Hsp70 homolog Ssb is a chaperone that binds translating ribosomes where it is thought to function primarily by promoting nascent peptide folding. Here the authors find that the ribosome biogenesis defect associated with the loss of Ssb is attributable to a specific disruption in TORC1 signaling rather than defects in ribosomal protein folding.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Adenosina Trifosfatasas/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Immunoblotting , Mutación , Fosforilación , Unión Proteica , Biosíntesis de Proteínas , Pliegue de Proteína , Proteínas Serina-Treonina Quinasas/genética , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal/genética , Factores de Transcripción/genética
2.
Nat Commun ; 7: 13563, 2016 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-27882919

RESUMEN

Cotranslational chaperones assist in de novo folding of nascent polypeptides in all organisms. In yeast, the heterodimeric ribosome-associated complex (RAC) forms a unique chaperone triad with the Hsp70 homologue Ssb. We report the X-ray structure of full length Ssb in the ATP-bound open conformation at 2.6 Å resolution and identify a positively charged region in the α-helical lid domain (SBDα), which is present in all members of the Ssb-subfamily of Hsp70s. Mutational analysis demonstrates that this region is strictly required for ribosome binding. Crosslinking shows that Ssb binds close to the tunnel exit via contacts with both, ribosomal proteins and rRNA, and that specific contacts can be correlated with switching between the open (ATP-bound) and closed (ADP-bound) conformation. Taken together, our data reveal how Ssb dynamics on the ribosome allows for the efficient interaction with nascent chains upon RAC-mediated activation of ATP hydrolysis.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Factores de Elongación de Péptidos/metabolismo , Conformación Proteica en Hélice alfa , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Cristalografía por Rayos X , Proteínas de Unión al GTP/ultraestructura , Proteínas HSP70 de Choque Térmico/ultraestructura , Factores de Elongación de Péptidos/ultraestructura , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/ultraestructura
3.
Mol Cell Biol ; 36(18): 2374-83, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27354063

RESUMEN

Targeting of transmembrane proteins to the endoplasmic reticulum (ER) proceeds via either the signal recognition particle (SRP) or the guided entry of tail-anchored proteins (GET) pathway, consisting of Get1 to -5 and Sgt2. While SRP cotranslationally targets membrane proteins containing one or multiple transmembrane domains, the GET pathway posttranslationally targets proteins containing a single C-terminal transmembrane domain termed the tail anchor. Here, we dissect the roles of the SRP and GET pathways in the sorting of homologous, two-membrane-spanning K(+) channel proteins termed Kcv, Kesv, and Kesv-VV. We show that Kcv is targeted to the ER cotranslationally via its N-terminal transmembrane domain, while Kesv-VV is targeted posttranslationally via its C-terminal transmembrane domain, which recruits Get4-5/Sgt2 and Get3. Unexpectedly, nascent Kcv recruited not only SRP but also the Get4-5 module of the GET pathway to ribosomes. Ribosome binding of Get4-5 was independent of Sgt2 and was strongly outcompeted by SRP. The combined data indicate a previously unrecognized cotranslational interplay between the SRP and GET pathways.


Asunto(s)
Proteínas Portadoras/metabolismo , Retículo Endoplásmico/metabolismo , Canales de Potasio/metabolismo , Saccharomyces cerevisiae/metabolismo , Partícula de Reconocimiento de Señal/metabolismo , Biosíntesis de Proteínas , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcripción Genética
4.
Nucleic Acids Res ; 44(12): 5629-45, 2016 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-27001512

RESUMEN

Chaperones of the Hsp70 family interact with a multitude of newly synthesized polypeptides and prevent their aggregation. Saccharomyces cerevisiae cells lacking the Hsp70 homolog Ssb suffer from pleiotropic defects, among others a defect in glucose-repression. The highly conserved heterotrimeric kinase SNF1/AMPK (AMP-activated protein kinase) is required for the release from glucose-repression in yeast and is a key regulator of energy balance also in mammalian cells. When glucose is available the phosphatase Glc7 keeps SNF1 in its inactive, dephosphorylated state. Dephosphorylation depends on Reg1, which mediates targeting of Glc7 to its substrate SNF1. Here we show that the defect in glucose-repression in the absence of Ssb is due to the ability of the chaperone to bridge between the SNF1 and Glc7 complexes. Ssb performs this post-translational function in concert with the 14-3-3 protein Bmh, to which Ssb binds via its very C-terminus. Raising the intracellular concentration of Ssb or Bmh enabled Glc7 to dephosphorylate SNF1 even in the absence of Reg1. By that Ssb and Bmh efficiently suppressed transcriptional deregulation of Δreg1 cells. The findings reveal that Ssb and Bmh comprise a new chaperone module, which is involved in the fine tuning of a phosphorylation-dependent switch between respiration and fermentation.


Asunto(s)
Adenosina Trifosfatasas/genética , Glucosa/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteína Fosfatasa 1/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Transcripción Genética , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Fermentación/genética , Glucosa/genética , Fosforilación , Respiración/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Mol Cell Biol ; 34(21): 4062-76, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25154418

RESUMEN

Ribosome stalling is an important incident enabling the cellular quality control machinery to detect aberrant mRNA. Saccharomyces cerevisiae Hbs1-Dom34 and Ski7 are homologs of the canonical release factor eRF3-eRF1, which recognize stalled ribosomes, promote ribosome release, and induce the decay of aberrant mRNA. Polyadenylated nonstop mRNA encodes aberrant proteins containing C-terminal polylysine segments which cause ribosome stalling due to electrostatic interaction with the ribosomal exit tunnel. Here we describe a novel mechanism, termed premature translation termination, which releases C-terminally truncated translation products from ribosomes stalled on polylysine segments. Premature termination during polylysine synthesis was abolished when ribosome stalling was prevented due to the absence of the ribosomal protein Asc1. In contrast, premature termination was enhanced, when the general rate of translation elongation was lowered. The unconventional termination event was independent of Hbs1-Dom34 and Ski7, but it was dependent on eRF3. Moreover, premature termination during polylysine synthesis was strongly increased in the absence of the ribosome-bound chaperones ribosome-associated complex (RAC) and Ssb (Ssb1 and Ssb2). On the basis of the data, we suggest a model in which eRF3-eRF1 can catalyze the release of nascent polypeptides even though the ribosomal A-site contains a sense codon when the rate of translation is abnormally low.


Asunto(s)
Polilisina/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adenosina Trifosfatasas/metabolismo , Codón de Terminación , Proteínas de Unión al GTP/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Factores de Terminación de Péptidos/genética , Factores de Terminación de Péptidos/metabolismo , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
6.
Int J Biochem Cell Biol ; 45(2): 201-12, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23041477

RESUMEN

Carbon monoxide (CO) is an endogenous gaseous transmitter that exerts antiproliferative effects in many cell types, but effects of CO on the translational machinery are not described. We examined the effects of the carbon monoxide releasing molecule-2 (CORM-2) on critical steps in translational signaling and global protein synthesis in pancreatic stellate cells (PSCs), the most prominent collagen-producing cells in the pancreas, whose activation is associated with pancreatic fibrosis. PSCs were isolated from rat pancreatic tissue and incubated with CORM-2. CORM-2 prevented the decrease in the phosphorylation of eukaryotic elongation factor 2 (eEF2) caused by serum. By contrast, the activation dependent phosphorylation of initiation factor 4E-binding protein 1 (4E-BP1) was inhibited by CORM-2 treatment. The phosphorylation of eukaryotic initiation factor 2α (eIF2α) and eukaryotic initiation factor 4E (eIF4E) were not affected by CORM-2 treatment. In consequence, CORM-2 mediated eEF2 phosphorylation and inactivation of 4E-BP1 suppressed global protein synthesis. These observations were associated with inhibition of phosphatidylinositol 3-kinase-Akt-mammalian target of rapamycin (PI3K-Akt-mTOR) signaling and increased intracellular calcium and cAMP levels. The CORM-2 mediated inhibition of protein synthesis resulted in downregulation of cyclin D1 and cyclin E expression, a subsequent decline in the phosphorylation of the retinoblastoma tumor suppressor protein (Rb) and cell growth arrest at the G(0)/G(1) phase checkpoint of the cell cycle. Our results suggest the therapeutic application of CO releasing molecules such as CORM-2 for the treatment of fibrosis, inflammation, cancer, or other pathologic states associated with excessive protein synthesis or hyperproliferation. However, prolonged exogenous application of CO might also have negative effects on cellular protein homeostasis.


Asunto(s)
Compuestos Organometálicos/farmacología , Extensión de la Cadena Peptídica de Translación/efectos de los fármacos , Factor 2 de Elongación Peptídica/metabolismo , Inhibidores de la Síntesis de la Proteína/farmacología , Animales , Señalización del Calcio , Monóxido de Carbono/metabolismo , Monóxido de Carbono/farmacología , Células Cultivadas , AMP Cíclico/metabolismo , Ciclina D1/metabolismo , Ciclina E/metabolismo , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Hemo-Oxigenasa 1/metabolismo , Sistema de Señalización de MAP Quinasas , Masculino , Compuestos Organometálicos/metabolismo , Células Estrelladas Pancreáticas/efectos de los fármacos , Células Estrelladas Pancreáticas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Cultivo Primario de Células , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Wistar , Proteína de Retinoblastoma/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
7.
Mol Biol Cell ; 23(16): 3027-40, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22740632

RESUMEN

Nascent polypeptide-associated complex (NAC) was initially found to bind to any segment of the nascent chain except signal sequences. In this way, NAC is believed to prevent mistargeting due to binding of signal recognition particle (SRP) to signalless ribosome nascent chain complexes (RNCs). Here we revisit the interplay between NAC and SRP. NAC does not affect SRP function with respect to signalless RNCs; however, NAC does affect SRP function with respect to RNCs targeted to the endoplasmic reticulum (ER). First, early recruitment of SRP to RNCs containing a signal sequence within the ribosomal tunnel is NAC dependent. Second, NAC is able to directly and tightly bind to nascent signal sequences. Third, SRP initially displaces NAC from RNCs; however, when the signal sequence emerges further, trimeric NAC·RNC·SRP complexes form. Fourth, upon docking to the ER membrane NAC remains bound to RNCs, allowing NAC to shield cytosolically exposed nascent chain domains not only before but also during cotranslational translocation. The combined data indicate a functional interplay between NAC and SRP on ER-targeted RNCs, which is based on the ability of the two complexes to bind simultaneously to distinct segments of a single nascent chain.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Retículo Endoplásmico/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Partícula de Reconocimiento de Señal/metabolismo , Factores de Transcripción/metabolismo , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/genética , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Unión Proteica , Biosíntesis de Proteínas , Transporte de Proteínas , Proteínas Ribosómicas/metabolismo , Eliminación de Secuencia
8.
J Biol Chem ; 287(31): 26029-37, 2012 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-22685293

RESUMEN

Legionella is a pathogenic Gram-negative bacterium that can multiply inside of eukaryotic cells. It translocates numerous bacterial effector proteins into target cells to transform host phagocytes into a niche for replication. One effector of Legionella pneumophila is the glucosyltransferase Lgt1, which modifies serine 53 in mammalian elongation factor 1A (eEF1A), resulting in inhibition of protein synthesis and cell death. Here, we demonstrate that similar to mammalian cells, Lgt1 was severely toxic when produced in yeast and effectively inhibited in vitro protein synthesis. Saccharomyces cerevisiae strains, which were deleted of endogenous eEF1A but harbored a mutant eEF1A not glucosylated by Lgt1, were resistant toward the bacterial effector. In contrast, deletion of Hbs1, which is also an in vitro substrate of the glucosyltransferase, did not influence the toxic effects of Lgt1. Serial mutagenesis in yeast showed that Phe(54), Tyr(56) and Trp(58), located immediately downstream of serine 53 of eEF1A, are essential for the function of the elongation factor. Replacement of serine 53 by glutamic acid, mimicking phosphorylation, produced a non-functional eEF1A, which failed to support growth of S. cerevisiae. Our data indicate that Lgt1-induced lethal effect in yeast depends solely on eEF1A. The region of eEF1A encompassing serine 53 plays a critical role in functioning of the elongation factor.


Asunto(s)
Proteínas Bacterianas/fisiología , Glucosiltransferasas/fisiología , Legionella pneumophila/enzimología , Factor 1 de Elongación Peptídica/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Proteínas de Unión al GTP/genética , Eliminación de Gen , Glucosiltransferasas/biosíntesis , Glucosiltransferasas/genética , Glicosilación , Proteínas HSP70 de Choque Térmico/genética , Interacciones Huésped-Patógeno , Legionella pneumophila/fisiología , Mutagénesis Sitio-Dirigida , Factor 1 de Elongación Peptídica/genética , Factores de Elongación de Péptidos/genética , Factores de Elongación de Péptidos/metabolismo , Fragmentos de Péptidos/química , Fenotipo , Biosíntesis de Proteínas , Proteínas Recombinantes/biosíntesis , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
9.
Mol Cell Biol ; 31(6): 1160-73, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21245388

RESUMEN

Mammalian ribosome-associated complex (mRAC), consisting of the J-domain protein MPP11 and the atypical Hsp70 homolog (70-homolog) Hsp70L1, can partly complement the function of RAC, which is the homologous complex from Saccharomyces cerevisiae. RAC is the J-domain partner exclusively of the 70-homolog Ssb, which directly and independently of RAC binds to the ribosome. We here show that growth defects due to mRAC depletion in HeLa cells resemble those of yeast strains lacking RAC. Functional conservation, however, did not extend to the 70-homolog partner of mRAC. None of the major human 70-homologs was able to complement the growth defects of yeast strains lacking Ssb or was bound to ribosomes in an Ssb-like manner. Instead, our data suggest that mRAC was a specific partner of human Hsp70 but not of its close homolog Hsc70. On a mechanistic level, ATP binding, but not ATP hydrolysis, by Hsp70L1 affected mRAC's function as a J-domain partner of Hsp70. The combined data indicate that, while functionally conserved, yeast and mammalian cells have evolved distinct solutions to ensure that Hsp70-type chaperones can efficiently assist the biogenesis of newly synthesized polypeptide chains.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas Oncogénicas/metabolismo , Ribosomas/metabolismo , Adenosina Trifosfato/metabolismo , Proliferación Celular , Proteínas de Unión al ADN/genética , Técnicas de Silenciamiento del Gen , Proteínas HSP70 de Choque Térmico/genética , Células HeLa , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Oncogénicas/genética , Unión Proteica , Proteínas de Unión al ARN , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Genes Dev ; 23(17): 2102-15, 2009 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-19723765

RESUMEN

Yeast senses the availability of external energy sources via multiple interconnected signaling networks. One of the central components is SNF1, the homolog of mammalian AMP-activated protein kinase, which in yeast is essential for the expression of glucose-repressed genes. When glucose is available hyperphosphorylated SNF1 is rendered inactive by the type 1 protein phosphatase Glc7. Dephosphorylation requires Reg1, which physically targets Glc7 to SNF1. Here we show that the chaperone Ssb is required to keep SNF1 in the nonphosphorylated state in the presence of glucose. Using a proteome approach we found that the Deltassb1Deltassb2 strain displays alterations in protein expression and suffers from phenotypic characteristics reminiscent of glucose repression mutants. Microarray analysis revealed a correlation between deregulation on the protein and on the transcript level. Supporting studies uncovered that SSB1 was an effective multicopy suppressor of severe growth defects caused by the Deltareg1 mutation. Suppression of Deltareg1 by high levels of Ssb was coupled to a reduction of Snf1 hyperphosphorylation back to the wild-type phosphorylation level. The data are consistent with a model in which Ssb is crucial for efficient regulation within the SNF1 signaling network, thereby allowing an appropriate response to changing glucose levels.


Asunto(s)
Glucosa/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/metabolismo , Regulación hacia Abajo , Regulación Fúngica de la Expresión Génica , Proteínas HSP70 de Choque Térmico/genética , Fosforilación , Proteína Fosfatasa 1/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...