Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Biol Regul ; 91: 101014, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38242820

RESUMEN

Myelodysplastic Syndromes, a heterogeneous group of hematological disorders, are characterized by abnormalities in phosphoinositide-dependent signaling, epigenetic regulators, apoptosis, and cytokine interactions within the bone marrow microenvironment, contributing to disease pathogenesis and neoplastic growth. Comprehensive knowledge of these pathways is crucial for the development of innovative therapies that aim to restore normal apoptosis and improve patient outcomes.


Asunto(s)
Células Madre Hematopoyéticas , Síndromes Mielodisplásicos , Humanos , Células Madre Hematopoyéticas/metabolismo , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/metabolismo , Médula Ósea/patología , Citocinas/metabolismo , Transducción de Señal
2.
Int J Mol Sci ; 24(17)2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37685903

RESUMEN

Phospholipase C (PLC) enzymes represent crucial participants in the plasma membrane of mammalian cells, including the cardiac sarcolemmal (SL) membrane of cardiomyocytes. They are responsible for the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) into 1,2-diacylglycerol (DAG) and inositol (1,4,5) trisphosphate (Ins(1,4,5)P3), both essential lipid mediators. These second messengers regulate the intracellular calcium (Ca2+) concentration, which activates signal transduction cascades involved in the regulation of cardiomyocyte activity. Of note, emerging evidence suggests that changes in cardiomyocytes' phospholipid profiles are associated with an increased occurrence of cardiovascular diseases, but the underlying mechanisms are still poorly understood. This review aims to provide a comprehensive overview of the significant impact of PLC on the cardiovascular system, encompassing both physiological and pathological conditions. Specifically, it focuses on the relevance of PLCß isoforms as potential cardiac biomarkers, due to their implications for pathological disorders, such as cardiac hypertrophy, diabetic cardiomyopathy, and myocardial ischemia/reperfusion injury. Gaining a deeper understanding of the mechanisms underlying PLCß activation and regulation is crucial for unraveling the complex signaling networks involved in healthy and diseased myocardium. Ultimately, this knowledge holds significant promise for advancing the development of potential therapeutic strategies that can effectively target and address cardiac disorders by focusing on the PLCß subfamily.


Asunto(s)
Cardiopatías , Isoenzimas , Animales , Humanos , Fosfolipasa C beta , Miocitos Cardíacos , Biomarcadores , Mamíferos
3.
Biomolecules ; 13(7)2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37509085

RESUMEN

Polyphosphoinositides (PPIns) are signalling messengers representing less than five per cent of the total phospholipid concentration within the cell. Despite their low concentration, these lipids are critical regulators of various cellular processes, including cell cycle, differentiation, gene transcription, apoptosis and motility. PPIns are generated by the phosphorylation of the inositol head group of phosphatidylinositol (PtdIns). Different pools of PPIns are found at distinct subcellular compartments, which are regulated by an array of kinases, phosphatases and phospholipases. Six of the seven PPIns species have been found in the nucleus, including the nuclear envelope, the nucleoplasm and the nucleolus. The identification and characterisation of PPIns interactor and effector proteins in the nucleus have led to increasing interest in the role of PPIns in nuclear signalling. However, the regulation and functions of PPIns in the nucleus are complex and are still being elucidated. This review summarises our current understanding of the localisation, biogenesis and physiological functions of the different PPIns species in the nucleus.


Asunto(s)
Núcleo Celular , Fosfatidilinositoles , Fosfatidilinositoles/metabolismo , Núcleo Celular/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Nucléolo Celular/metabolismo , Membrana Nuclear/metabolismo
4.
Biomolecules ; 12(3)2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35327539

RESUMEN

Renal failure is a worldwide disease with a continuously increasing prevalence and involving a rising need for long-term treatment, mainly by haemodialysis. Arteriovenous fistula (AVF) is the favourite type of vascular access for haemodialysis; however, the lasting success of this therapy depends on its maturation, which is directly influenced by many concomitant processes such as vein wall thickening or inflammation. Understanding the molecular mechanisms that drive AVF maturation and failure can highlight new or combinatorial drugs for more personalized therapy. In this review we analysed the relevance of critical enzymes such as PI3K, AKT and mTOR in processes such as wall thickening remodelling, immune system activation and inflammation reduction. We focused on these enzymes due to their involvement in the modulation of numerous cellular activities such as proliferation, differentiation and motility, and their impairment is related to many diseases such as cancer, metabolic syndrome and neurodegenerative disorders. In addition, these enzymes are highly druggable targets, with several inhibitors already being used in patient treatment for cancer and with encouraging results for AVF. Finally, we delineate how these enzymes may be targeted to control specific aspects of AVF in an effort to propose a more specialized therapy with fewer side effects.


Asunto(s)
Fístula Arteriovenosa , Derivación Arteriovenosa Quirúrgica , Fallo Renal Crónico , Fístula Arteriovenosa/etiología , Derivación Arteriovenosa Quirúrgica/efectos adversos , Derivación Arteriovenosa Quirúrgica/métodos , Femenino , Humanos , Inflamación/etiología , Fallo Renal Crónico/terapia , Masculino , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Serina-Treonina Quinasas TOR
5.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34312224

RESUMEN

Regulatory T cells (Tregs) play fundamental roles in maintaining peripheral tolerance to prevent autoimmunity and limit legitimate immune responses, a feature hijacked in tumor microenvironments in which the recruitment of Tregs often extinguishes immune surveillance through suppression of T-effector cell signaling and tumor cell killing. The pharmacological tuning of Treg activity without impacting on T conventional (Tconv) cell activity would likely be beneficial in the treatment of various human pathologies. PIP4K2A, 2B, and 2C constitute a family of lipid kinases that phosphorylate PtdIns5P to PtdIns(4,5)P2 They are involved in stress signaling, act as synthetic lethal targets in p53-null tumors, and in mice, the loss of PIP4K2C leads to late onset hyperinflammation. Accordingly, a human single nucleotide polymorphism (SNP) near the PIP4K2C gene is linked with susceptibility to autoimmune diseases. How PIP4Ks impact on human T cell signaling is not known. Using ex vivo human primary T cells, we found that PIP4K activity is required for Treg cell signaling and immunosuppressive activity. Genetic and pharmacological inhibition of PIP4K in Tregs reduces signaling through the PI3K, mTORC1/S6, and MAPK pathways, impairs cell proliferation, and increases activation-induced cell death while sparing Tconv. PIP4K and PI3K signaling regulate the expression of the Treg master transcriptional activator FOXP3 and the epigenetic signaling protein Ubiquitin-like containing PHD and RING finger domains 1 (UHRF1). Our studies suggest that the pharmacological inhibition of PIP4K can reprogram human Treg identity while leaving Tconv cell signaling and T-helper differentiation to largely intact potentially enhancing overall immunological activity.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Factores de Transcripción Forkhead/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Linfocitos T Reguladores/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/genética , Proliferación Celular , Supervivencia Celular , Clonación Molecular , Factores de Transcripción Forkhead/genética , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/inmunología , Regulación Enzimológica de la Expresión Génica/fisiología , Humanos , Terapia de Inmunosupresión , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Quinazolinas/farmacología , Transducción de Señal , Tiofenos/farmacología , Ubiquitina-Proteína Ligasas/genética
6.
Front Oncol ; 11: 678824, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34109125

RESUMEN

Polyphosphoinositides (PPIns) and their modulating enzymes are involved in regulating many important cellular functions including proliferation, differentiation or gene expression, and their deregulation is involved in human diseases such as metabolic syndromes, neurodegenerative disorders and cancer, including Acute Myeloid Leukemia (AML). Given that PPIns regulating enzymes are highly druggable targets, several studies have recently highlighted the potential of targeting them in AML. For instance many inhibitors targeting the PI3K pathway are in various stages of clinical development and more recently other novel enzymes such as PIP4K2A have been implicated as AML targets. PPIns have distinct subcellular organelle profiles, in part driven by the specific localisation of enzymes that metabolise them. In particular, in the nucleus, PPIns are regulated in response to various extracellular and intracellular pathways and interact with specific nuclear proteins to control epigenetic cell state. While AML does not normally manifest with as many mutations as other cancers, it does appear in large part to be a disease of dysregulation of epigenetic signalling and many novel therapeutics are aimed at reprogramming AML cells toward a differentiated cell state or to one that is responsive to alternative successful but limited AML therapies such as ATRA. Here, we propose that by combining bioinformatic analysis with inhibition of PPIns pathways, especially within the nucleus, we might discover new combination therapies aimed at reprogramming transcriptional output to attenuate uncontrolled AML cell growth. Furthermore, we outline how different part of a PPIns signalling unit might be targeted to control selective outputs that might engender more specific and therefore less toxic inhibitory outcomes.

7.
Adv Biol Regul ; 76: 100722, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32362560

RESUMEN

The immune system is a complex network that acts to protect vertebrates from foreign microorganisms and carries out immunosurveillance to combat cancer. In order to avoid hyper-activation of the immune system leading to collateral damage tissues and organs and to prevent self-attack, the network has the intrinsic control mechanisms that negatively regulate immune responses. Central to this negative regulation are regulatory T (T-Reg) cells, which through cytokine secretion and cell interaction limit uncontrolled clonal expansion and functions of activated immune cells. Given that positive or negative manipulation of T-Regs activity could be utilised to therapeutically treat host versus graft rejection or cancer respectively, understanding how signaling pathways impact on T-Regs function should reveal potential targets with which to intervene. The phosphatidylinositol-3-kinase (PI3K) pathway controls a vast array of cellular processes and is critical in T cell activation. Here we focus on phosphoinositide 3-kinases (PI3Ks) and their ability to regulate T-Regs cell differentiation and function.


Asunto(s)
Factores de Transcripción Forkhead/inmunología , Neoplasias/inmunología , Fosfatidilinositol 3-Quinasas/inmunología , Subunidades de Proteína/inmunología , Transducción de Señal/inmunología , Linfocitos T Reguladores/inmunología , Animales , Antineoplásicos Inmunológicos/uso terapéutico , Factores de Transcripción Forkhead/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunoterapia/métodos , Activación de Linfocitos , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositoles/inmunología , Fosfatidilinositoles/metabolismo , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/genética , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Transducción de Señal/efectos de los fármacos , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/patología , Células Th17/efectos de los fármacos , Células Th17/inmunología , Células Th17/patología , Células Th2/efectos de los fármacos , Células Th2/inmunología , Células Th2/patología , Macrófagos Asociados a Tumores/efectos de los fármacos , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/patología
8.
Handb Exp Pharmacol ; 259: 291-308, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31889219

RESUMEN

Nuclear inositides have a specific subcellular distribution that is linked to specific functions; thus their regulation is fundamental both in health and disease. Emerging evidence shows that alterations in multiple inositide signalling pathways are involved in pathophysiology, not only in cancer but also in other diseases. Here, we give an overview of the main features of inositides in the cell, and we discuss their potential as new molecular therapeutic targets.


Asunto(s)
Núcleo Celular , Fosfatidilinositoles/fisiología , Transducción de Señal , Humanos
9.
Adv Biol Regul ; 75: 100673, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31711974

RESUMEN

Recurrent cytogenetic aberrations, genetic mutations and variable gene expression have been consistently recognized in solid cancers and in leukaemia, including in Myelodysplastic Syndromes (MDS). Besides conventional cytogenetics, the growing accessibility of new techniques has led to a deeper analysis of the molecular significance of genetic variations. Indeed, gene mutations affecting splicing genes, as well as genes implicated in essential signalling pathways, play a pivotal role in MDS physiology and pathophysiology, representing potential new molecular targets for innovative therapeutic strategies.


Asunto(s)
Sistemas de Liberación de Medicamentos , Epigénesis Genética , Mutación , Síndromes Mielodisplásicos , Empalme del ARN , Transducción de Señal , Humanos , Síndromes Mielodisplásicos/tratamiento farmacológico , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/metabolismo , Síndromes Mielodisplásicos/fisiopatología
10.
Int J Mol Sci ; 20(9)2019 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-31035587

RESUMEN

Phosphatidylinositol (PI)-related signaling plays a pivotal role in many cellular aspects, including survival, cell proliferation, differentiation, DNA damage, and trafficking. PI is the core of a network of proteins represented by kinases, phosphatases, and lipases which are able to add, remove or hydrolyze PI, leading to different phosphoinositide products. Among the seven known phosphoinositides, phosphatidylinositol 5 phosphate (PI5P) was the last to be discovered. PI5P presence in cells is very low compared to other PIs. However, much evidence collected throughout the years has described the role of this mono-phosphoinositide in cell cycles, stress response, T-cell activation, and chromatin remodeling. Interestingly, PI5P has been found in different cellular compartments, including the nucleus. Here, we will review the nuclear role of PI5P, describing how it is synthesized and regulated, and how changes in the levels of this rare phosphoinositide can lead to different nuclear outputs.


Asunto(s)
Núcleo Celular/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Animales , Humanos , Metabolismo de los Lípidos , Proteínas Nucleares/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal , Estrés Fisiológico
11.
Int J Mol Sci ; 20(8)2019 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-31022972

RESUMEN

Stem cells are undifferentiated cells that can give rise to several different cell types and can self-renew. Given their ability to differentiate into different lineages, stem cells retain huge therapeutic potential for regenerative medicine. Therefore, the understanding of the signaling pathways involved in stem cell pluripotency maintenance and differentiation has a paramount importance in order to understand these biological processes and to develop therapeutic strategies. In this review, we focus on phosphoinositide 3 kinase (PI3K) since its signaling pathway regulates many cellular processes, such as cell growth, proliferation, survival, and cellular transformation. Precisely, in human stem cells, the PI3K cascade is involved in different processes from pluripotency and induced pluripotent stem cell (iPSC) reprogramming to mesenchymal and oral mesenchymal differentiation, through different and interconnected mechanisms.


Asunto(s)
Diferenciación Celular , Reprogramación Celular , Células Madre Embrionarias Humanas/citología , Células Madre Pluripotentes Inducidas/citología , Células Madre Mesenquimatosas/citología , Fosfatidilinositol 3-Quinasa/metabolismo , Transducción de Señal , Células Madre Embrionarias Humanas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Mesenquimatosas/metabolismo
12.
J Lipid Res ; 60(2): 312-317, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30287524

RESUMEN

Phosphoinositide-specific phospholipases C (PI-PLCs) are involved in signaling pathways related to critical cellular functions, such as cell cycle regulation, cell differentiation, and gene expression. Nuclear PI-PLCs have been studied as key enzymes, molecular targets, and clinical prognostic/diagnostic factors in many physiopathologic processes. Here, we summarize the main studies about nuclear PI-PLCs, specifically, the imbalance of isozymes such as PI-PLCß1 and PI-PLCζ, in cerebral, hematologic, neuromuscular, and fertility disorders. PI-PLCß1 and PI-PLCÉ£1 affect epilepsy, depression, and bipolar disorder. In the brain, PI-PLCß1 is involved in endocannabinoid neuronal excitability and is a potentially novel signature gene for subtypes of high-grade glioma. An altered quality or quantity of PI-PLCζ contributes to sperm defects that result in infertility, and PI-PLCß1 aberrant inositide signaling contributes to both hematologic and degenerative muscle diseases. Understanding the mechanisms behind PI-PLC involvement in human pathologies may help identify new strategies for personalized therapies of these conditions.


Asunto(s)
Encefalopatías/enzimología , Núcleo Celular/enzimología , Enfermedades Hematológicas/enzimología , Infertilidad/enzimología , Enfermedades Neuromusculares/enzimología , Fosfolipasas de Tipo C/metabolismo , Animales , Encefalopatías/patología , Enfermedades Hematológicas/patología , Humanos , Infertilidad/patología , Isoenzimas/metabolismo , Enfermedades Neuromusculares/patología
13.
Adv Biol Regul ; 71: 1-9, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30420274

RESUMEN

Adipose-derived stem cells (ADSCs) are multipotent mesenchymal stem cells that have the ability to differentiate into several cell types, including chondrocytes, osteoblasts, adipocytes, and neural cells. Given their easy accessibility and abundance, they became an attractive source of mesenchymal stem cells, as well as candidates for developing new treatments for reconstructive medicine and tissue engineering. Our study identifies a new signaling pathway that promotes ADSCs osteogenic differentiation and links the lipid signaling enzyme phospholipase C (PLC)-ß1 to the expression of the cell cycle protein cyclin E. During osteogenic differentiation, PLC-ß1 expression varies concomitantly with cyclin E expression and the two proteins interact. These findings contribute to clarify the pathways involved in osteogenic differentiation and provide evidence to develop therapeutic strategies for bone regeneration.


Asunto(s)
Tejido Adiposo/metabolismo , Diferenciación Celular , Ciclina E/metabolismo , Proteínas Oncogénicas/metabolismo , Osteogénesis , Fosfolipasa C beta/metabolismo , Células Madre/metabolismo , Tejido Adiposo/citología , Ciclina E/genética , Humanos , Proteínas Oncogénicas/genética , Fosfolipasa C beta/genética , Transducción de Señal , Células Madre/citología
14.
Adv Biol Regul ; 67: 1-6, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29102395

RESUMEN

Phosphatidylinositols (PIs) are responsible for several signaling pathways related to many cellular functions, such as cell cycle regulation at different check-points, cell proliferation, cell differentiation, membrane trafficking and gene expression. PI metabolism is not only present at the cytoplasmic level, but also at the nuclear one, where different signaling pathways affect essential nuclear mechanisms in eukaryotic cells. In this review we focus on nuclear inositide signaling in relation to cell cycle regulation. Many evidences underline the pivotal role of nuclear inositide signaling in cell cycle regulation and cell proliferation associated to different strategic physiopathological mechanisms in several cell systems and diseases.


Asunto(s)
Ciclo Celular/fisiología , Diferenciación Celular/fisiología , Núcleo Celular/metabolismo , Fosfatidilinositoles/metabolismo , Transducción de Señal/fisiología , Animales , Humanos
15.
J Cell Physiol ; 232(9): 2550-2557, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27731506

RESUMEN

Phosphatidylinositol (PI) signaling is an essential regulator of cell motility and proliferation. A portion of PI metabolism and signaling takes place in the nuclear compartment of eukaryotic cells, where an array of kinases and phosphatases localize and modulate PI. Among these, Diacylglycerol Kinases (DGKs) are a class of phosphotransferases that phosphorylate diacylglycerol and induce the synthesis of phosphatidic acid. Nuclear DGKalpha modulates cell cycle progression, and its activity or expression can lead to changes in the phosphorylated status of the Retinoblastoma protein, thus, impairing G1/S transition and, subsequently, inducing cell cycle arrest, which is often uncoupled with apoptosis or autophagy induction. Here we report for the first time not only that the DGKalpha isoform is highly expressed in the nuclei of human erythroleukemia cell line K562, but also that its nuclear activity drives K562 cells through the G1/S transition during cell cycle progression. J. Cell. Physiol. 232: 2550-2557, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Núcleo Celular/enzimología , Proliferación Celular , Diacilglicerol Quinasa/metabolismo , Puntos de Control de la Fase G1 del Ciclo Celular , Leucemia Eritroblástica Aguda/enzimología , Núcleo Celular/efectos de los fármacos , Núcleo Celular/patología , Proliferación Celular/efectos de los fármacos , Diacilglicerol Quinasa/antagonistas & inhibidores , Diacilglicerol Quinasa/genética , Relación Dosis-Respuesta a Droga , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Humanos , Isoenzimas , Células K562 , Leucemia Eritroblástica Aguda/genética , Leucemia Eritroblástica Aguda/patología , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Interferencia de ARN , Proteína de Retinoblastoma/metabolismo , Transducción de Señal , Factores de Tiempo , Transfección
16.
Adv Biol Regul ; 63: 1-5, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27776973

RESUMEN

Phosphoinositide-phospholipase C-ß1 (PLC-ß1) plays a crucial role in the initiation of the genetic program responsible for muscle differentiation and osteogenesis. During myogenic differentiation of murine C2C12 myoblasts, PLC-ß1 signaling pathway involves the Inositol Polyphosphate Multikinase (IPMK) and ß-catenin as downstream effectors. By means of c-jun binding to cyclin D3 promoter, the activation of PLC-ß1 pathway determines cyclin D3 accumulation. However, osteogenesis requires PLC-ß1 expression and up-regulation but it does not affect cyclin D3 levels, suggesting that the two processes require the activation of different mediators.


Asunto(s)
Desarrollo de Músculos/genética , Mioblastos/metabolismo , Osteoblastos/metabolismo , Osteogénesis/genética , Fosfolipasa C beta/genética , Animales , Diferenciación Celular , Línea Celular , Ciclina D3/genética , Ciclina D3/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Ratones , Mioblastos/citología , Osteoblastos/citología , Fosfolipasa C beta/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Transducción de Señal , beta Catenina/genética , beta Catenina/metabolismo
18.
Biochim Biophys Acta ; 1851(6): 898-910, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25728392

RESUMEN

Phosphatidylinositol-5-phosphate (PtdIns5P)-4-kinases (PIP4Ks) are stress-regulated lipid kinases that phosphorylate PtdIns5P to generate PtdIns(4,5)P2. There are three isoforms of PIP4Ks: PIP4K2A, 2B and 2C, which localise to different subcellular compartments with the PIP4K2B isoform being localised predominantly in the nucleus. Suppression of PIP4K expression selectively prevents tumour cell growth in vitro and prevents tumour development in mice that have lost the tumour suppressor p53. p53 is lost or mutated in over 70% of all human tumours. These studies suggest that inhibition of PIP4K signalling constitutes a novel anti-cancer therapeutic target. In this review we will discuss the role of PIP4K in tumour suppression and speculate on how PIP4K modulates nuclear phosphoinositides (PPIns) and how this might impact on nuclear functions to regulate cell growth. This article is part of a Special Issue entitled Phosphoinositides.


Asunto(s)
1-Fosfatidilinositol 4-Quinasa/metabolismo , Núcleo Celular/enzimología , Regulación Leucémica de la Expresión Génica , Leucemia Mieloide Aguda/enzimología , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , 1-Fosfatidilinositol 4-Quinasa/antagonistas & inhibidores , 1-Fosfatidilinositol 4-Quinasa/genética , Animales , Antineoplásicos/farmacología , Citoplasma/enzimología , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Ratones , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética
19.
Oncotarget ; 5(12): 4222-31, 2014 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-24962066

RESUMEN

PLC-beta 1 (PLCß1) inhibits in human K562 cells erythroid differentiation induced by mithramycin (MTH) by targeting miR-210 expression. Inhibition of miR-210 affects the erythroid differentiation pathway and it occurs to a greater extent in MTH-treated cells. Overexpression of PLCß1 suppresses the differentiation of K562 elicited by MTH as demonstrated by the absence of γ-globin expression. Inhibition of PLCß1 expression is capable to promote the differentiation process leading to a recovery of γ-globin gene even in the absence of MTH. Our experimental evidences suggest that PLCß1 signaling regulates erythropoiesis through miR-210. Indeed overexpression of PLCß1 leads to a decrease of miR-210 expression after MTH treatment. Moreover miR-210 is up-regulated when PLCß1 expression is down-regulated. When we silenced PKCα by RNAi technique, we found a decrease in miR-210 and γ-globin expression levels, which led to a severe slowdown of cell differentiation in K562 cells and these effects were the same encountered in cells overexpressing PLCß1. Therefore we suggest a novel role for PLCß1 in regulating miR-210 and our data hint at the fact that, in human K562 erythroleukemia cells, the modulation of PLCß1 expression is able to exert an impairment of normal erythropoiesis as assessed by γ-globin expression.


Asunto(s)
Células Eritroides/metabolismo , MicroARNs/genética , Fosfolipasa C beta/genética , Fosfolipasa C beta/metabolismo , Plicamicina/metabolismo , Diferenciación Celular , Humanos , Células K562 , MicroARNs/metabolismo , Transfección
20.
FEBS J ; 280(24): 6311-21, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23890371

RESUMEN

Evidence accumulated over the past 20 years has highlighted the presence of an autonomous nuclear inositol lipid metabolism, and suggests that lipid signalling molecules are important components of signalling pathways operating within the nucleus. Nuclear polyphosphoinositide (PI) signalling relies on the synthesis and metabolism of phosphatidylinositol 4,5-bisphosphate, which can modulate the activity of effector proteins and is a substrate of signalling enzymes. The regulation of the nuclear PI pool is totally independent from the plasma membrane counterpart, suggesting that the nucleus constitutes a functionally distinct compartment of inositol lipids metabolism. Among the nuclear enzymes involved in PI metabolism, inositide specific phospholipase C (PI-PLC) has been one of the most extensively studied. Several isoforms of PI-PLCs have been identified in the nucleus, namely PI-PLC-ß1, γ1, δ1 and ζ; however, the ß1 isozyme is the best characterized. In the present review, we focus on the signal transduction-related metabolism of nuclear PI-PLC and review the most convincing evidence for PI-PLC expression and activity being involved in differentiation and proliferation programmes in several cell systems. Moreover, nuclear PI-PLC is an intermediate effector and interactor for nuclear inositide signalling. The inositide cycle exists and shows a biological role inside the nucleus. It is an autonomous lipid-dependent signalling system, independently regulated with respect to the one at the plasma membrane counterpart, and is involved in cell cycle progression and differentiation.


Asunto(s)
Núcleo Celular/metabolismo , Fosfatidilinositoles/metabolismo , Fosfolipasas de Tipo C/metabolismo , Animales , Humanos , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...