Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Immunity ; 56(9): 2152-2171.e13, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37582369

RESUMEN

Microglia phenotypes are highly regulated by the brain environment, but the transcriptional networks that specify the maturation of human microglia are poorly understood. Here, we characterized stage-specific transcriptomes and epigenetic landscapes of fetal and postnatal human microglia and acquired corresponding data in induced pluripotent stem cell (iPSC)-derived microglia, in cerebral organoids, and following engraftment into humanized mice. Parallel development of computational approaches that considered transcription factor (TF) co-occurrence and enhancer activity allowed prediction of shared and state-specific gene regulatory networks associated with fetal and postnatal microglia. Additionally, many features of the human fetal-to-postnatal transition were recapitulated in a time-dependent manner following the engraftment of iPSC cells into humanized mice. These data and accompanying computational approaches will facilitate further efforts to elucidate mechanisms by which human microglia acquire stage- and disease-specific phenotypes.


Asunto(s)
Células Madre Pluripotentes Inducidas , Microglía , Humanos , Ratones , Animales , Redes Reguladoras de Genes , Encéfalo , Regulación de la Expresión Génica
2.
Nat Immunol ; 24(7): 1188-1199, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37322178

RESUMEN

Spalt-like transcription factor 1 (SALL1) is a critical regulator of organogenesis and microglia identity. Here we demonstrate that disruption of a conserved microglia-specific super-enhancer interacting with the Sall1 promoter results in complete and specific loss of Sall1 expression in microglia. By determining the genomic binding sites of SALL1 and leveraging Sall1 enhancer knockout mice, we provide evidence for functional interactions between SALL1 and SMAD4 required for microglia-specific gene expression. SMAD4 binds directly to the Sall1 super-enhancer and is required for Sall1 expression, consistent with an evolutionarily conserved requirement of the TGFß and SMAD homologs Dpp and Mad for cell-specific expression of Spalt in the Drosophila wing. Unexpectedly, SALL1 in turn promotes binding and function of SMAD4 at microglia-specific enhancers while simultaneously suppressing binding of SMAD4 to enhancers of genes that become inappropriately activated in enhancer knockout microglia, thereby enforcing microglia-specific functions of the TGFß-SMAD signaling axis.


Asunto(s)
Microglía , Factores de Transcripción , Animales , Ratones , Sitios de Unión , ADN , Ratones Noqueados , Microglía/metabolismo , Regiones Promotoras Genéticas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
3.
Immunity ; 55(8): 1386-1401.e10, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35931086

RESUMEN

Deleterious somatic mutations in DNA methyltransferase 3 alpha (DNMT3A) and TET mehtylcytosine dioxygenase 2 (TET2) are associated with clonal expansion of hematopoietic cells and higher risk of cardiovascular disease (CVD). Here, we investigated roles of DNMT3A and TET2 in normal human monocyte-derived macrophages (MDM), in MDM isolated from individuals with DNMT3A or TET2 mutations, and in macrophages isolated from human atherosclerotic plaques. We found that loss of function of DNMT3A or TET2 resulted in a type I interferon response due to impaired mitochondrial DNA integrity and activation of cGAS signaling. DNMT3A and TET2 normally maintained mitochondrial DNA integrity by regulating the expression of transcription factor A mitochondria (TFAM) dependent on their interactions with RBPJ and ZNF143 at regulatory regions of the TFAM gene. These findings suggest that targeting the cGAS-type I IFN pathway may have therapeutic value in reducing risk of CVD in patients with DNMT3A or TET2 mutations.


Asunto(s)
Enfermedades Cardiovasculares , ADN Metiltransferasa 3A/metabolismo , Proteínas de Unión al ADN/metabolismo , Dioxigenasas/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Proteínas de Unión al ADN/genética , Dioxigenasas/genética , Humanos , Interferones/metabolismo , Macrófagos/metabolismo , Mitocondrias/genética , Mutación/genética , Nucleotidiltransferasas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Transactivadores/metabolismo
4.
Nat Protoc ; 16(3): 1629-1646, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33495627

RESUMEN

We present a nuclei isolation protocol for genomic and epigenomic interrogation of multiple cell type populations in the human and rodent brain. The nuclei isolation protocol allows cell type-specific profiling of neurons, microglia, oligodendrocytes, and astrocytes, being compatible with fresh and frozen samples obtained from either resected or postmortem brain tissue. This 2-day procedure consists of tissue homogenization with fixation, nuclei extraction, and antibody staining followed by fluorescence-activated nuclei sorting (FANS) and does not require specialized skillsets. Cell type-specific nuclei populations can be used for downstream omic-scale sequencing applications with an emphasis on epigenomic interrogation such as histone modifications, transcription factor binding, chromatin accessibility, and chromosome architecture. The nuclei isolation protocol enables translational examination of archived healthy and diseased brain specimens through utilization of existing medical biorepositories.


Asunto(s)
Núcleo Celular/química , Citometría de Flujo/métodos , Animales , Astrocitos/metabolismo , Encéfalo/metabolismo , Química Encefálica/fisiología , Núcleo Celular/metabolismo , Cromatina/metabolismo , Epigenómica/métodos , Genómica/métodos , Humanos , Neuronas/metabolismo , Procesamiento Proteico-Postraduccional/fisiología
5.
Nat Commun ; 4: 2990, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24356538

RESUMEN

Atopic asthma is an inflammatory pulmonary disease associated with Th2 adaptive immune responses triggered by innocuous antigens. While dendritic cells (DCs) are known to shape the adaptive immune response, the mechanisms by which DCs promote Th2 differentiation remain elusive. Herein we demonstrate that Th2-promoting stimuli induce DC expression of IRF4. Mice with conditional deletion of Irf4 in DCs show a dramatic defect in Th2-type lung inflammation, yet retain the ability to elicit pulmonary Th1 antiviral responses. Using loss- and gain-of-function analysis, we demonstrate that Th2 differentiation is dependent on IRF4 expression in DCs. Finally, IRF4 directly targets and activates the Il-10 and Il-33 genes in DCs. Reconstitution with exogenous IL-10 and IL-33 recovers the ability of Irf4-deficient DCs to promote Th2 differentiation. These findings reveal a regulatory module in DCs by which IRF4 modulates IL-10 and IL-33 cytokine production to specifically promote Th2 differentiation and inflammation.


Asunto(s)
Asma/metabolismo , Diferenciación Celular , Células Dendríticas/citología , Hipersensibilidad Inmediata/metabolismo , Factores Reguladores del Interferón/metabolismo , Pulmón/metabolismo , Células Th2/citología , Animales , Células de la Médula Ósea/citología , Femenino , Regulación de la Expresión Génica , Inflamación , Interleucina-10/metabolismo , Interleucinas , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Ácaros , Análisis de Secuencia por Matrices de Oligonucleótidos , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...