Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Reprod Immunol ; 162: 104206, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38309014

RESUMEN

Fetal microchimerism (FMc) arises when fetal cells enter maternal circulation, potentially persisting for decades. Increased FMc is associated with fetal growth restriction, preeclampsia, and anti-angiogenic shift in placenta-associated proteins in diabetic and normotensive term pregnancies. The two-stage model of preeclampsia postulates that placental dysfunction causes such shift in placental growth factor (PlGF) and soluble fms-like tyrosine kinase-1 (sFLt-1), triggering maternal vascular inflammation and endothelial dysfunction. We investigated whether anti-angiogenic shift, fetal sex, fetal growth restriction, and severe maternal hypertension correlate with FMc in hypertensive disorders of pregnancy with new-onset features (n = 125). Maternal blood was drawn pre-delivery at > 25 weeks' gestation. FMc was detected by quantitative polymerase chain reaction targeting paternally inherited unique fetal alleles. PlGF and sFlt-1 were measured by immunoassay. We estimated odds ratios (ORs) by logistic regression and detection rate ratios (DRRs) by negative binomial regression. PlGF correlated negatively with FMc quantity (DRR = 0.2, p = 0.005) and female fetal sex correlated positively with FMc prevalence (OR = 5.0, p < 0.001) and quantity (DRR = 4.5, p < 0.001). Fetal growth restriction no longer correlated with increased FMc quantity after adjustment for correlates of placental dysfunction (DRR = 1.5, p = 0.272), whereas severe hypertension remained correlated with both FMc measures (OR = 5.5, p = 0.006; DRR = 6.3, p = 0.001). Our findings suggest that increased FMc is independently associated with both stages of the two-stage preeclampsia model. The association with female fetal sex has implications for microchimerism detection methodology. Future studies should target both male and female-origin FMc and focus on clarifying which placental mechanisms impact fetal cell transfer and how FMc impacts the maternal vasculature.


Asunto(s)
Hipertensión , Preeclampsia , Proteínas Gestacionales , Embarazo , Femenino , Masculino , Humanos , Factor de Crecimiento Placentario/metabolismo , Retardo del Crecimiento Fetal , Placenta/metabolismo , Proteínas Gestacionales/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular , Biomarcadores/metabolismo
2.
J Reprod Immunol ; 159: 104124, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37541161

RESUMEN

Fetal cells cross the placenta during pregnancy and some have the ability to persist in maternal organs and circulation long-term, a phenomenon termed fetal microchimerism. These cells often belong to stem cell or immune cell lineages. The long-term effects of fetal microchimerism are likely mixed, potentially depending on the amount of fetal cells transferred, fetal-maternal histocompatibility and fetal cell-specific properties. Both human and animal data indicate that fetal-origin cells partake in tissue repair and may benefit maternal health overall. On the other hand, these cells have been implicated in inflammatory diseases by studies showing increased fetal microchimerism in women with autoimmune diseases such as systemic lupus erythematosus and rheumatoid arthritis. During pregnancy, preeclampsia is associated with increased cell-transfer between the mother and fetus, and an increase in immune cell subsets. In the current review, we discuss potential mechanisms of transplacental transfer, including passive leakage across the compromised diffusion barrier and active recruitment of cells residing in the placenta or fetal circulation. Within the conceptual framework of the two-stage model of preeclampsia, where syncytiotrophoblast stress is a common pathophysiological pathway to maternal and fetal clinical features of preeclampsia, we argue that microchimerism may represent a mechanistic link between stage 1 placental dysfunction and stage 2 maternal cardiovascular inflammation and endothelial dysfunction. Finally, we postulate that fetal microchimerism may contribute to the known association between placental syndromes and increased long-term maternal cardiovascular disease risk. Fetal microchimerism research represents an exciting opportunity for developing new disease biomarkers and targeted prophylaxis against maternal diseases.


Asunto(s)
Intercambio Materno-Fetal , Preeclampsia , Embarazo , Femenino , Humanos , Placenta , Quimerismo , Feto
3.
J Reprod Immunol ; 159: 104114, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37473584

RESUMEN

Fetal microchimerism (FMc) arises during pregnancy as fetal cells enter maternal circulation and remain decades postpartum. Circulating FMc is increased in preeclampsia, fetal growth restriction, and as we recently showed, is associated with biomarkers of placental dysfunction in normotensive term pregnancies. Diabetes mellitus (DM) also correlates with placental dysfunction. We hypothesize that poor glucose control and markers of placental dysfunction are associated with increased circulating FMc in diabetic pregnancies. We included 122 pregnancies preceding active labor (pregestational DM, n = 77, gestational DM (GDM), n = 45) between 2001 and 2017. Maternal and fetal samples were genotyped for various human leukocyte antigen (HLA) loci, and other polymorphisms to identify fetus-specific alleles. We used validated polymerase chain reaction (PCR) assays to quantify FMc in maternal peripheral blood buffy coat. Negative binomial regression with adjustment for confounders was used to assess FMc quantity. In pregestational DM, increased circulating FMc correlated with elevation of HbA1c (≥ 6.0 %) (detection rate ratio (DRR) = 4.9, p = 0.010) and a 1000 pg/mL rise in the anti-angiogenic biomarker soluble fms-like tyrosine kinase-1 (sFlt-1) (DRR = 1.1, p = 0.011). In GDM, increased FMc correlated with elevated 2-hour oral glucose tolerance test results (DRR = 2.3, p = 0.046) and birthweight < 10th or > 90th percentile (DRR = 4.2, p = 0.049). These findings support our novel hypothesis that FMc correlates with poor glucose control and various aspects of placental dysfunction in DM. Whether increased FMc in pregnancies with poor glucose control and placental dysfunction contributes to the risk of preeclampsia in diabetic pregnancies and to the increased risk of chronic cardiovascular disease later in life remains to be investigated.


Asunto(s)
Diabetes Mellitus , Enfermedades Placentarias , Preeclampsia , Embarazo , Femenino , Humanos , Placenta , Glucemia , Quimerismo , Feto , Receptor 1 de Factores de Crecimiento Endotelial Vascular , Biomarcadores
4.
Acta Obstet Gynecol Scand ; 102(6): 690-698, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36933003

RESUMEN

INTRODUCTION: Transplacental fetal cell transfer results in the engraftment of fetal-origin cells in the pregnant woman's body, a phenomenon termed fetal microchimerism. Increased fetal microchimerism measured decades postpartum is implicated in maternal inflammatory disease. Understanding which factors cause increased fetal microchimerism is therefore important. During pregnancy, circulating fetal microchimerism and placental dysfunction increase with increasing gestational age, particularly towards term. Placental dysfunction is reflected by changes in circulating placenta-associated markers, specifically placental growth factor (PlGF), decreased by several 100 pg/mL, soluble fms-like tyrosine kinase-1 (sFlt-1), increased by several 1000 pg/mL, and the sFlt-1/PlGF ratio, increased by several 10 (pg/mL)/(pg/mL). We investigated whether such alterations in placenta-associated markers correlate with an increase in circulating fetal-origin cells. MATERIAL AND METHODS: We included 118 normotensive, clinically uncomplicated pregnancies (gestational age 37+1 up to 42+2 weeks' gestation) pre-delivery. PlGF and sFlt-1 (pg/mL) were measured by Elecsys® Immunoassays. We extracted DNA from maternal and fetal samples and genotyped four human leukocyte antigen loci and 17 other autosomal loci. Paternally inherited, unique fetal alleles served as polymerase chain reaction (PCR) targets for detecting fetal-origin cells in maternal buffy coat. Fetal-origin cell prevalence was assessed by logistic regression, and quantity by negative binomial regression. Statistical exposures included gestational age (weeks), PlGF (100 pg/mL), sFlt-1 (1000 pg/mL) and the sFlt-1/PlGF ratio (10 (pg/mL)/(pg/mL)). Regression models were adjusted for clinical confounders and PCR-related competing exposures. RESULTS: Gestational age was positively correlated with fetal-origin cell quantity (DRR = 2.2, P = 0.003) and PlGF was negatively correlated with fetal-origin cell prevalence (odds ratio [OR]100 = 0.6, P = 0.003) and quantity (DRR100 = 0.7, P = 0.001). The sFlt-1 and the sFlt-1/PlGF ratios were positively correlated with fetal-origin cell prevalence (OR1000 = 1.3, P = 0.014 and OR10 = 1.2, P = 0.038, respectively), but not quantity (DRR1000 = 1.1, P = 0.600; DRR10 = 1.1, P = 0.112, respectively). CONCLUSIONS: Our results suggest that placental dysfunction as evidenced by placenta-associated marker changes, may increase fetal cell transfer. The magnitudes of change tested were based on ranges in PlGF, sFlt-1 and the sFlt-1/PlGF ratio previously demonstrated in pregnancies near and post-term, lending clinical significance to our findings. Our results were statistically significant after adjusting for confounders including gestational age, supporting our novel hypothesis that underlying placental dysfunction potentially is a driver of increased fetal microchimerism.


Asunto(s)
Placenta , Preeclampsia , Embarazo , Femenino , Humanos , Adulto , Factor de Crecimiento Placentario , Prevalencia , Biomarcadores , Tercer Trimestre del Embarazo , Receptor 1 de Factores de Crecimiento Endotelial Vascular , Preeclampsia/diagnóstico
5.
Am J Obstet Gynecol MFM ; 5(1): 100794, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36334725

RESUMEN

BACKGROUND: Hypertensive disorders of pregnancy (preeclampsia, gestational hypertension, and chronic hypertension), diabetes mellitus, and placental dysfunction confer an increased risk of long-term maternal cardiovascular disease. Preeclampsia is also associated with acute atherosis that involves lesions of uteroplacental spiral arteries, resembling early stages of atherosclerosis. Serum amyloid A1 is involved in hypercoagulability and atherosclerosis and may aggregate into amyloid-aggregations of misfolded proteins. Pregnancy zone protein may inhibit amyloid aggregation. Amyloid is involved in Alzheimer's disease and cardiovascular disease; it has been identified in preeclampsia, but its role in preeclampsia pathophysiology is unclear. OBJECTIVE: We hypothesized that serum amyloid A1 would be increased and pregnancy zone protein decreased in hypertensive disorders of pregnancy and diabetic pregnancies and that serum amyloid A1 and pregnancy zone protein would correlate with placental dysfunction markers (fetal growth restriction and dysregulated angiogenic biomarkers) and acute atherosis. STUDY DESIGN: Serum amyloid A1 is measurable in both the serum and plasma. In our study, plasma from 549 pregnancies (normotensive, euglycemic controls: 258; early-onset preeclampsia: 71; late-onset preeclampsia: 98; gestational hypertension: 30; chronic hypertension: 9; diabetes mellitus: 83) was assayed for serum amyloid A1 and pregnancy zone protein. The serum levels of angiogenic biomarkers soluble fms-like tyrosine kinase-1 and placental growth factor were available for 547 pregnancies, and the results of acute atherosis evaluation were available for 313 pregnancies. The clinical characteristics and circulating biomarkers were compared between the pregnancy groups using the Mann-Whitney U, chi-squared, or Fisher exact test as appropriate. Spearman's rho was calculated for assessing correlations. RESULTS: In early-onset preeclampsia, serum amyloid A1 was increased compared with controls (17.1 vs 5.1 µg/mL, P<.001), whereas pregnancy zone protein was decreased (590 vs 892 µg/mL, P=.002). Pregnancy zone protein was also decreased in diabetes compared with controls (683 vs 892 µg/mL, P=.01). Serum amyloid A1 was associated with placental dysfunction (fetal growth restriction, elevated soluble fms-like tyrosine kinase-1 to placental growth factor ratio). Pregnancy zone protein correlated negatively with soluble fms-like tyrosine kinase-1 to placental growth factor ratio in all study groups. Acute atherosis was not associated with serum amyloid A1 or pregnancy zone protein. CONCLUSION: Proteins involved in atherosclerosis, hypercoagulability, and protein misfolding are dysregulated in early-onset preeclampsia and placental dysfunction, which links them and potentially contributes to future maternal cardiovascular disease.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Hipertensión Inducida en el Embarazo , Enfermedades Placentarias , Preeclampsia , Complicaciones del Embarazo , Trombofilia , Femenino , Humanos , Embarazo , Aterosclerosis/metabolismo , Biomarcadores/metabolismo , Enfermedades Cardiovasculares/metabolismo , Retardo del Crecimiento Fetal , Hipertensión Inducida en el Embarazo/metabolismo , Placenta , Enfermedades Placentarias/diagnóstico , Enfermedades Placentarias/epidemiología , Enfermedades Placentarias/etiología , Factor de Crecimiento Placentario/metabolismo , Preeclampsia/diagnóstico , Preeclampsia/epidemiología , Preeclampsia/etiología , Complicaciones del Embarazo/diagnóstico , Complicaciones del Embarazo/epidemiología , Trombofilia/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Amiloide/sangre
6.
Am J Obstet Gynecol ; 226(2S): S895-S906, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-32971013

RESUMEN

Physiological transformation with remodeling of the uteroplacental spiral arteries is key to a successful placentation and normal placental function. It is an intricate process that involves, but is not restricted to, complex interactions between maternal decidual immune cells and invasive trophoblasts in the uterine wall. In normal pregnancy, the smooth muscle cells of the arterial tunica media of uteroplacental spiral arteries are replaced by invading trophoblasts and fibrinoid, and the arterial diameter increases 5- to 10-fold. Poor remodeling of the uteroplacental spiral arteries is linked to early-onset preeclampsia and several other major obstetrical syndromes, including fetal growth restriction, placental abruption, and spontaneous preterm premature rupture of membranes. Extravillous endoglandular and endovenous trophoblast invasions have recently been put forth as potential contributors to these syndromes as well. The well-acknowledged disturbed extravillous invasion of maternal spiral arteries in preeclampsia is summarized, as are briefly novel concepts of disturbed extravillous endoglandular and endovenous trophoblast invasions. Acute atherosis is a foam cell lesion of the uteroplacental spiral arteries associated with poor remodeling. It shares some morphologic features with early stages of atherosclerosis, but several molecular differences between these lesions have also recently been revealed. Acute atherosis is most prevalent at the maternal-fetal interface, at the tip of the spiral arteries. The localization of acute atherosis downstream of poorly remodeled arteries suggests that alterations in blood flow may trigger inflammation and foam cell development. Acute atherosis within the decidua basalis is not, however, confined to unremodeled areas of spiral arteries or to hypertensive disorders of pregnancy and may even be present in some clinically uneventful pregnancies. Given that foam cells of atherosclerotic lesions are known to arise from smooth muscle cells or macrophages activated by multiple types of inflammatory stimulation, we have proposed that multiple forms of decidual vascular inflammation may cause acute atherosis, with or without poor remodeling and/or preeclampsia. Furthermore, we propose that acute atherosis may develop at different gestational ages, depending on the type and degree of the inflammatory insult. This review summarizes the current knowledge of spiral artery remodeling defects and acute atherosis in preeclampsia. Some controversies will be presented, including endovascular and interstitial trophoblast invasion depths, the concept of 2-stage trophoblast invasion, and whether the replacement of maternal spiral artery endothelium by fetal endovascular trophoblasts is permanent. We will discuss the role of acute atherosis in the pathophysiology of preeclampsia and short- and long-term health correlates. Finally, we suggest future opportunities for research on this intriguing uteroplacental interface between the mother and fetus.


Asunto(s)
Aterosclerosis/fisiopatología , Placenta/irrigación sanguínea , Placentación/fisiología , Preeclampsia/fisiopatología , Remodelación Vascular/fisiología , Decidua/irrigación sanguínea , Decidua/patología , Femenino , Humanos , Embarazo , Trofoblastos/fisiología , Arteria Uterina/fisiología , Arteria Uterina/fisiopatología
7.
J Reprod Immunol ; 146: 103331, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34030048

RESUMEN

Human Leukocyte Antigen-G (HLA-G) prevents the activity of immune cells and is decreased in women with preeclampsia. We aimed to investigate the associations between circulating soluble HLA-G (sHLA-G) and 92 cardiovascular disease-related biomarkers from a previously published multiplex study in women with preeclampsia and controls. We found 15 markers significantly associated with circulating sHLA-G in univariate analyses. After multivariable adjusted regression, only proto-oncogene tyrosine-protein kinase Src (SRC) and vascular endothelial growth factor D were significantly associated with sHLA-G. Low SRC, previously observed in the circulation of preeclamptic women, may be regulated by low sHLA-G, and reflect decreased trophoblast differentiation and syncytical formation.


Asunto(s)
Antígenos HLA-G/sangre , Preeclampsia/epidemiología , Trofoblastos/inmunología , Biomarcadores/sangre , Estudios de Casos y Controles , Diferenciación Celular/inmunología , Cesárea , Femenino , Antígenos HLA-G/inmunología , Factores de Riesgo de Enfermedad Cardiaca , Humanos , Preeclampsia/sangre , Preeclampsia/diagnóstico , Preeclampsia/inmunología , Embarazo , Medición de Riesgo/métodos , Factor D de Crecimiento Endotelial Vascular/sangre , Familia-src Quinasas/sangre
8.
J Reprod Immunol ; 144: 103284, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33578175

RESUMEN

HLA-G, a non-classical HLA molecule expressed by extravillous trophoblasts, plays a role in the maternal immune tolerance towards fetal cells. HLA-G expression is regulated by genetic polymorphisms in the 3' untranslated region (3'UTR). Low levels of HLA-G in the maternal circulation and placental tissue are linked to preeclampsia. Our objective was to investigate whether variants of the 3'UTR of the HLA-G gene in mother and fetus are associated with acute atherosis, a pregnancy specific arterial lesion of the decidua basalis that is prevalent in preeclampsia. Paired maternal and fetal DNA samples from 83 normotensive and 83 preeclamptic pregnancies were analyzed. We sequenced the part of the HLA-G 3'UTR containing a 14-bp insertion/deletion region and seven single nucleotide polymorphisms (SNPs). Associations with acute atherosis were tested by logistic regression. The frequency of heterozygosity for the 14-bp polymorphism (Ins/Del) and the +3142 SNP (C/G) variant in the fetus are associated with acute atherosis in preeclampsia (66.7 % vs. 39.6 %, p = 0.039, and 69.0 % vs. 43.4 %, p = 0.024). Furthermore, the fetal UTR-3 haplotype, which encompasses the 14-bp deletion and the +3142G variant, is associated with acute atherosis in preeclampsia (15 % vs. 3.8 %, p = 0.016). In conclusion, HLA-G polymorphisms in the fetus are associated with acute atherosis. We hypothesize that these polymorphisms lead to altered HLA-G expression in the decidua basalis, affecting local feto-maternal immune tolerance and development of acute atherosis.


Asunto(s)
Arteriosclerosis/genética , Decidua/patología , Histocompatibilidad Materno-Fetal/genética , Preeclampsia/inmunología , Regiones no Traducidas 3'/genética , Enfermedad Aguda , Adulto , Arteriosclerosis/inmunología , Arteriosclerosis/patología , Decidua/irrigación sanguínea , Decidua/inmunología , Femenino , Antígenos HLA-G , Haplotipos , Humanos , Polimorfismo de Nucleótido Simple , Preeclampsia/genética , Preeclampsia/patología , Embarazo , Análisis de Secuencia de ADN
9.
J Reprod Immunol ; 143: 103249, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33254097

RESUMEN

Preeclampsia is a leading cause of maternal and offspring mortality and morbidity, and predicts increased future cardiovascular disease risk. Placental dysfunction and immune system dysregulation are likely key pathophysiological factors. Soluble human leukocyte antigen G (sHLA-G) may dampen the specific immune response towards placental trophoblasts. Previous studies have shown low sHLA-G levels in preeclampsia, but postpartum, levels are unknown. Furthermore, the relationship between sHLA-G and sFlt-1 and PlGF, placental function markers, is unknown. We hypothesized that low maternal sHLA-G during pregnancy would be associated with placental dysfunction, including preeclampsia, gestational hypertension, and dysregulated sFlt-1 and PlGF, and that sHLA-G would remain decreased following preeclampsia. We included 316 pregnant women: 58 with early-onset preeclampsia (<34 weeks' gestation), 81 with late-onset preeclampsia (≥34 weeks' gestation), 25 with gestational hypertension, and 152 normotensive controls. Postpartum (1 or 3 years), we included 321 women: 29 with early-onset preeclampsia, 98 with late-onset preeclampsia, 57 with gestational hypertension, and 137 who were normotensive during their index pregnancies. In pregnancy, plasma sHLA-G was significantly lower both in the early- and late-onset preeclampsia groups compared to controls. In women with preeclampsia or gestational hypertension, sHLA-G was inversely correlated with serum sFlt-1. Postpartum, plasma sHLA-G levels were significantly higher in women who had had early-onset preeclampsia compared to controls. Our results support that sHLA-G may be important for placental function. Unexpectedly, sHLA-G was elevated up to 3 years after early-onset preeclampsia, suggesting an excessively activated immune system following this severe preeclampsia form, potentially contributing to future cardiovascular disease risk.


Asunto(s)
Antígenos HLA-G/sangre , Periodo Posparto/sangre , Preeclampsia/inmunología , Adulto , Estudios Transversales , Femenino , Antígenos HLA-G/metabolismo , Humanos , Placenta/inmunología , Placenta/metabolismo , Preeclampsia/sangre , Preeclampsia/diagnóstico , Embarazo , Estudios Retrospectivos , Índice de Severidad de la Enfermedad , Receptor 1 de Factores de Crecimiento Endotelial Vascular/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA