Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant Cell Physiol ; 62(4): 624-640, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-33561287

RESUMEN

Iron (Fe) toxicity is a major challenge for plant cultivation in acidic waterlogged soil environments, where lowland rice is a major staple food crop. Only few studies have addressed the molecular characterization of excess Fe tolerance in rice, and these highlight different mechanisms for Fe tolerance. Out of 16 lowland rice varieties, we identified a pair of contrasting lines, Fe-tolerant Lachit and -susceptible Hacha. The two lines differed in their physiological and morphological responses to excess Fe, including leaf growth, leaf rolling, reactive oxygen species generation and Fe and metal contents. These responses were likely due to genetic origin as they were mirrored by differential gene expression patterns, obtained through RNA sequencing, and corresponding gene ontology term enrichment in tolerant vs. susceptible lines. Thirty-five genes of the metal homeostasis category, mainly root expressed, showed differential transcriptomic profiles suggestive of an induced tolerance mechanism. Twenty-two out of these 35 metal homeostasis genes were present in selection sweep genomic regions, in breeding signatures, and/or differentiated during rice domestication. These findings suggest that Fe excess tolerance is an important trait in the domestication of lowland rice, and the identified genes may further serve to design the targeted Fe tolerance breeding of rice crops.


Asunto(s)
Adaptación Biológica/genética , Hierro/toxicidad , Oryza/genética , Proteínas de Plantas/genética , Adaptación Biológica/efectos de los fármacos , Productos Agrícolas/genética , Domesticación , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Homeostasis/efectos de los fármacos , Homeostasis/genética , India , Hierro/metabolismo , Oryza/efectos de los fármacos , Oryza/fisiología , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética
2.
iScience ; 23(11): 101730, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33235981

RESUMEN

Aureochromes represent a unique type of blue light photoreceptors that possess a blue light sensing flavin-binding LOV-domain and a DNA-binding bZIP domain, thus being light-driven transcription factors. The diatom Phaeodactylum tricornutum, a member of the essential marine primary producers, possesses four aureochromes (PtAUREO1a, 1b, 1c, 2). Here we show a dramatic change in the global gene expression pattern of P. tricornutum wild-type cells after a shift from red to blue light. About 75% of the genes show significantly changed transcript levels already after 10 and 60 min of blue light exposure, which includes genes of major transcription factors as well as other photoreceptors. Very surprisingly, this light-induced regulation of gene expression is almost completely inhibited in independent PtAureo1a knockout lines. Such a massive and fast transcriptional change depending on one single photoreceptor is so far unprecedented. We conclude that PtAUREO1a plays a key role in diatoms upon blue light exposure.

4.
Plant Cell Physiol ; 60(3): 702-712, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30590832

RESUMEN

Galdieria sulphuraria is a unicellular red alga that lives in hot, acidic, toxic metal-rich, volcanic environments, where few other organisms survive. Its genome harbors up to 5% of genes that were most likely acquired through horizontal gene transfer. These genes probably contributed to G.sulphuraria's adaptation to its extreme habitats, resulting in today's polyextremophilic traits. Here, we applied RNA-sequencing to obtain insights into the acclimation of a thermophilic organism towards temperatures below its growth optimum and to study how horizontally acquired genes contribute to cold acclimation. A decrease in growth temperature from 42�C/46�C to 28�C resulted in an upregulation of ribosome biosynthesis, while excreted proteins, probably components of the cell wall, were downregulated. Photosynthesis was suppressed at cold temperatures, and transcript abundances indicated that C-metabolism switched from gluconeogenesis to glycogen degradation. Folate cycle and S-adenosylmethionine cycle (one-carbon metabolism) were transcriptionally upregulated, probably to drive the biosynthesis of betaine. All these cold-induced changes in gene expression were reversible upon return to optimal growth temperature. Numerous genes acquired by horizontal gene transfer displayed temperature-dependent expression changes, indicating that these genes contributed to adaptive evolution in G.sulphuraria.


Asunto(s)
Rhodophyta/metabolismo , Adaptación Fisiológica/genética , Adaptación Fisiológica/fisiología , Proteínas Algáceas/genética , Proteínas Algáceas/metabolismo , Frío , Respuesta al Choque por Frío/genética , Respuesta al Choque por Frío/fisiología , Transferencia de Gen Horizontal/genética , Transferencia de Gen Horizontal/fisiología , Filogenia , Rhodophyta/genética , Rhodophyta/fisiología , Biología de Sistemas/métodos
5.
Front Plant Sci ; 9: 1709, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30559749

RESUMEN

This study was aimed at elucidating the significance of photorespiratory serine (Ser) production for cysteine (Cys) biosynthesis. For this purpose, sulfur (S) metabolism and its crosstalk with nitrogen (N) and carbon (C) metabolism were analyzed in wildtype Arabidopsis and its photorespiratory bou-2 mutant with impaired glycine decarboxylase (GDC) activity. Foliar glycine and Ser contents were enhanced in the mutant at day and night. The high Ser levels in the mutant cannot be explained by transcript abundances of genes of the photorespiratory pathway or two alternative pathways of Ser biosynthesis. Despite enhanced foliar Ser, reduced GDC activity mediated a decline in sulfur flux into major sulfur pools in the mutant, as a result of deregulation of genes of sulfur reduction and assimilation. Still, foliar Cys and glutathione contents in the mutant were enhanced. The use of Cys for methionine and glucosinolates synthesis was reduced in the mutant. Reduced GDC activity in the mutant downregulated Calvin Cycle and nitrogen assimilation genes, upregulated key enzymes of glycolysis and the tricarboxylic acid (TCA) pathway and modified accumulation of sugars and TCA intermediates. Thus, photorespiratory Ser production can be replaced by other metabolic Ser sources, but this replacement deregulates the cross-talk between S, N, and C metabolism.

6.
Mol Plant ; 11(7): 955-969, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29734002

RESUMEN

The transition metal manganese (Mn) is indispensable for photoautotrophic growth since photosystem II (PSII) employs an inorganic Mn4CaO5 cluster for water splitting. Here, we show that the Arabidopsis membrane protein CHLOROPLAST MANGANESE TRANSPORTER1 (CMT1) is involved in chloroplast Mn homeostasis. CMT1 is the closest homolog of the previously characterized thylakoid Mn transporter PHOTOSYNTHESIS-AFFECTED MUTANT71 (PAM71). In contrast to PAM71, CMT1 resides at the chloroplast envelope and is ubiquitously expressed. Nonetheless, like PAM71, the expression of CMT1 can also alleviate the Mn-sensitive phenotype of yeast mutant Δpmr1. The cmt1 mutant is severely suppressed in growth, chloroplast ultrastructure, and PSII activity owing to a decrease in the amounts of pigments and thylakoid membrane proteins. The importance of CMT1 for chloroplast Mn homeostasis is demonstrated by the significant reduction in chloroplast Mn concentrations in cmt1-1, which exhibited reduced Mn binding in PSII complexes. Moreover, CMT1 expression is downregulated in Mn-surplus conditions. The pam71 cmt1-1double mutant resembles the cmt1-1 single mutant rather than pam71 in most respects. Taken together, our results suggest that CMT1 mediates Mn2+ uptake into the chloroplast stroma, and that CMT1 and PAM71 function sequentially in Mn delivery to PSII across the chloroplast envelope and the thylakoid membrane.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Manganeso/metabolismo , Tilacoides/metabolismo , Proteínas de Arabidopsis/genética , ADN (Citosina-5-)-Metiltransferasas/genética , Homeostasis , Fotosíntesis , Complejo de Proteína del Fotosistema II/metabolismo
7.
Front Plant Sci ; 9: 1830, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30619403

RESUMEN

The aim of present study was to elucidate the significance of the phosphorylated pathway of Ser production for Cys biosynthesis in leaves at day and night and upon cadmium (Cd) exposure. For this purpose, Arabidopsis wildtype plants as control and its psp mutant knocked-down in phosphoserine phosphatase (PSP) were used to test if (i) photorespiratory Ser is the dominant precursor of Cys synthesis in autotrophic tissue in the light, (ii) the phosphorylated pathway of Ser production can take over Ser biosynthesis in leaves at night, and (iii) Cd exposure stimulates Cys and glutathione (GSH) biosynthesis and effects the crosstalk of S and N metabolism, irrespective of the Ser source. Glycine (Gly) and Ser contents were not affected by reduction of the psp transcript level confirming that the photorespiratory pathway is the main route of Ser synthesis. The reduction of the PSP transcript level in the mutant did not affect day/night regulation of sulfur fluxes while day/night fluctuation of sulfur metabolite amounts were no longer observed, presumably due to slower turnover of sulfur metabolites in the mutant. Enhanced contents of non-protein thiols in both genotypes and of GSH only in the psp mutant were observed upon Cd treatment. Mutation of the phosphorylated pathway of Ser biosynthesis caused an accumulation of alanine, aspartate, lysine and a decrease of branched-chain amino acids. Knock-down of the PSP gene induced additional defense mechanisms against Cd toxicity that differ from those of WT plants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...