Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
NPJ Aging Mech Dis ; 7(1): 2, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-33398016

RESUMEN

Alzheimer's disease (AD) is the leading cause of dementia in aging individuals. Yet, the pathophysiological processes involved in AD onset and progression are still poorly understood. Among numerous strategies, a comprehensive overview of gene expression alterations in the diseased brain could contribute for a better understanding of the AD pathology. In this work, we probed the differential expression of genes in different brain regions of healthy and AD adult subjects using data from three large transcriptomic studies: Mayo Clinic, Mount Sinai Brain Bank (MSBB), and ROSMAP. Using a combination of differential expression of gene and isoform switch analyses, we provide a detailed landscape of gene expression alterations in the temporal and frontal lobes, harboring brain areas affected at early and late stages of the AD pathology, respectively. Next, we took advantage of an indirect approach to assign the complex gene expression changes revealed in bulk RNAseq to individual cell types/subtypes of the adult brain. This strategy allowed us to identify previously overlooked gene expression changes in the brain of AD patients. Among these alterations, we show isoform switches in the AD causal gene amyloid-beta precursor protein (APP) and the risk gene bridging integrator 1 (BIN1), which could have important functional consequences in neuronal cells. Altogether, our work proposes a novel integrative strategy to analyze RNAseq data in AD and other neurodegenerative diseases based on both gene/transcript expression and regional/cell-type specificities.

3.
Mol Psychiatry ; 26(10): 5592-5607, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33144711

RESUMEN

Although APP metabolism is being intensively investigated, a large fraction of its modulators is yet to be characterized. In this context, we combined two genome-wide high-content screenings to assess the functional impact of miRNAs and genes on APP metabolism and the signaling pathways involved. This approach highlighted the involvement of FERMT2 (or Kindlin-2), a genetic risk factor of Alzheimer's disease (AD), as a potential key modulator of axon guidance, a neuronal process that depends on the regulation of APP metabolism. We found that FERMT2 directly interacts with APP to modulate its metabolism, and that FERMT2 underexpression impacts axonal growth, synaptic connectivity, and long-term potentiation in an APP-dependent manner. Last, the rs7143400-T allele, which is associated with an increased AD risk and localized within the 3'UTR of FERMT2, induced a downregulation of FERMT2 expression through binding of miR-4504 among others. This miRNA is mainly expressed in neurons and significantly overexpressed in AD brains compared to controls. Altogether, our data provide strong evidence for a detrimental effect of FERMT2 underexpression in neurons and insight into how this may influence AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Humanos , Proteínas de la Membrana , Proteínas de Neoplasias , Plasticidad Neuronal/genética , Neuronas , Factores de Riesgo
4.
Brain Commun ; 2(2): fcaa139, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33718872

RESUMEN

Recent meta-analyses of genome-wide association studies identified a number of genetic risk factors of Alzheimer's disease; however, little is known about the mechanisms by which they contribute to the pathological process. As synapse loss is observed at the earliest stage of Alzheimer's disease, deciphering the impact of Alzheimer's risk genes on synapse formation and maintenance is of great interest. In this article, we report a microfluidic co-culture device that physically isolates synapses from pre- and postsynaptic neurons and chronically exposes them to toxic amyloid ß peptides secreted by model cell lines overexpressing wild-type or mutated (V717I) amyloid precursor protein. Co-culture with cells overexpressing mutated amyloid precursor protein exposed the synapses of primary hippocampal neurons to amyloid ß1-42 molecules at nanomolar concentrations and induced a significant decrease in synaptic connectivity, as evidenced by distance-based assignment of postsynaptic puncta to presynaptic puncta. Treating the cells with antibodies that target different forms of amyloid ß suggested that low molecular weight oligomers are the likely culprit. As proof of concept, we demonstrate that overexpression of protein tyrosine kinase 2 beta-an Alzheimer's disease genetic risk factor involved in synaptic plasticity and shown to decrease in Alzheimer's disease brains at gene expression and protein levels-selectively in postsynaptic neurons is protective against amyloid ß1-42-induced synaptotoxicity. In summary, our lab-on-a-chip device provides a physiologically relevant model of Alzheimer's disease-related synaptotoxicity, optimal for assessing the impact of risk genes in pre- and postsynaptic compartments.

5.
Acta Neuropathol ; 138(4): 631-652, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31065832

RESUMEN

The bridging integrator 1 gene (BIN1) is a major genetic risk factor for Alzheimer's disease (AD). In this report, we investigated how BIN1-dependent pathophysiological processes might be associated with Tau. We first generated a cohort of control and transgenic mice either overexpressing human MAPT (TgMAPT) or both human MAPT and BIN1 (TgMAPT;TgBIN1), which we followed-up from 3 to 15 months. In TgMAPT;TgBIN1 mice short-term memory deficits appeared earlier than in TgMAPT mice; however-unlike TgMAPT mice-TgMAPT;TgBIN1 mice did not exhibit any long-term or spatial memory deficits for at least 15 months. After killing the cohort at 18 months, immunohistochemistry revealed that BIN1 overexpression prevents both Tau mislocalization and somatic inclusion in the hippocampus, where an increase in BIN1-Tau interaction was also observed. We then sought mechanisms controlling the BIN1-Tau interaction. We developed a high-content screening approach to characterize modulators of the BIN1-Tau interaction in an agnostic way (1,126 compounds targeting multiple pathways), and we identified-among others-an inhibitor of calcineurin, a Ser/Thr phosphatase. We determined that calcineurin dephosphorylates BIN1 on a cyclin-dependent kinase phosphorylation site at T348, promoting the open conformation of the neuronal BIN1 isoform. Phosphorylation of this site increases the availability of the BIN1 SH3 domain for Tau interaction, as demonstrated by nuclear magnetic resonance experiments and in primary neurons. Finally, we observed that although the levels of the neuronal BIN1 isoform were unchanged in AD brains, phospho-BIN1(T348):BIN1 ratio was increased, suggesting a compensatory mechanism. In conclusion, our data support the idea that BIN1 modulates the AD risk through an intricate regulation of its interaction with Tau. Alteration in BIN1 expression or activity may disrupt this regulatory balance with Tau and have direct effects on learning and memory.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Trastornos de la Memoria/metabolismo , Memoria a Largo Plazo/fisiología , Proteínas del Tejido Nervioso/metabolismo , Tauopatías/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas tau/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Trastornos de la Memoria/genética , Trastornos de la Memoria/patología , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Neuronas/patología , Fosforilación , Memoria Espacial/fisiología , Tauopatías/genética , Tauopatías/patología , Proteínas Supresoras de Tumor/genética
6.
J Clin Lipidol ; 12(5): 1280-1289, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30170993

RESUMEN

BACKGROUND: Blood polyunsaturated fatty acid (PUFA) levels are determined by diet and by endogenous synthesis via Δ5- and Δ6-desaturases (encoded by the FADS1 and FADS2 genes, respectively). Genome-wide association studies have reported associations between FADS1-FADS2 polymorphisms and the plasma concentrations of PUFAs, HDL- and LDL-cholesterol, and triglycerides. However, much remains unknown regarding the molecular mechanisms explaining how variants affect the function of FADS1-FADS2 genes. OBJECTIVE: Here, we sought to identify the functional variant(s) within the FADS gene cluster. METHODS: To address this question, we (1) genotyped individuals (n = 540) for the rs174547 polymorphism to confirm associations with PUFA levels used as surrogate estimates of desaturase activities and (2) examined the functionality of variants in linkage disequilibrium with rs174547 using bioinformatics and luciferase reporter assays. RESULTS: The rs174547 minor allele was associated with higher erythrocyte levels of dihomo-γ-linolenic acid and lower levels of arachidonic acid, suggesting a lower Δ5-desaturase activity. In silico analyses suggested that rs174545 and rs174546, in perfect linkage disequilibrium with rs174547, might alter miRNA binding sites in the FADS1 3'UTR. In HuH7 and HepG2 cells transfected with FADS1 3'UTR luciferase vectors, the haplotype constructs bearing the rs174546T minor allele showed 30% less luciferase activity. This relative decrease reached 60% in the presence of miR-149-5p and was partly abolished by cotransfection with an miR-149-5p inhibitor. CONCLUSION: This study identifies FADS1 rs174546 as a functional variant that may explain the associations between FADS1-FADS2 polymorphisms and lipid-related phenotypes.


Asunto(s)
Regiones no Traducidas 3'/genética , Eritrocitos/metabolismo , Ácido Graso Desaturasas/genética , Ácidos Grasos Omega-6/metabolismo , Polimorfismo de Nucleótido Simple , Adulto , Anciano , Alelos , Secuencia de Bases , Biología Computacional , delta-5 Desaturasa de Ácido Graso , Regulación hacia Abajo/genética , Femenino , Células Hep G2 , Humanos , Masculino , MicroARNs/genética , Persona de Mediana Edad , Familia de Multigenes/genética , Fenotipo
7.
Acta Neuropathol ; 133(6): 955-966, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27933404

RESUMEN

Genome-wide association studies (GWASs) have identified 19 susceptibility loci for Alzheimer's disease (AD). However, understanding how these genes are involved in the pathophysiology of AD is one of the main challenges of the "post-GWAS" era. At least 123 genes are located within the 19 susceptibility loci; hence, a conventional approach (studying the genes one by one) would not be time- and cost-effective. We therefore developed a genome-wide, high-content siRNA screening approach and used it to assess the functional impact of gene under-expression on APP metabolism. We found that 832 genes modulated APP metabolism. Eight of these genes were located within AD susceptibility loci. Only FERMT2 (a ß3-integrin co-activator) was also significantly associated with a variation in cerebrospinal fluid Aß peptide levels in 2886 AD cases. Lastly, we showed that the under-expression of FERMT2 increases Aß peptide production by raising levels of mature APP at the cell surface and facilitating its recycling. Taken as a whole, our data suggest that FERMT2 modulates the AD risk by regulating APP metabolism and Aß peptide production.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , ARN Interferente Pequeño/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Biomarcadores/líquido cefalorraquídeo , Membrana Celular/metabolismo , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Sitios Genéticos , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Células HEK293 , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Neuronas/metabolismo , Neuronas/patología , Interferencia de ARN , Ratas
8.
EBioMedicine ; 9: 278-292, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27333034

RESUMEN

Although several ADAMs (A disintegrin-like and metalloproteases) have been shown to contribute to the amyloid precursor protein (APP) metabolism, the full spectrum of metalloproteases involved in this metabolism remains to be established. Transcriptomic analyses centred on metalloprotease genes unraveled a 50% decrease in ADAM30 expression that inversely correlates with amyloid load in Alzheimer's disease brains. Accordingly, in vitro down- or up-regulation of ADAM30 expression triggered an increase/decrease in Aß peptides levels whereas expression of a biologically inactive ADAM30 (ADAM30(mut)) did not affect Aß secretion. Proteomics/cell-based experiments showed that ADAM30-dependent regulation of APP metabolism required both cathepsin D (CTSD) activation and APP sorting to lysosomes. Accordingly, in Alzheimer-like transgenic mice, neuronal ADAM30 over-expression lowered Aß42 secretion in neuron primary cultures, soluble Aß42 and amyloid plaque load levels in the brain and concomitantly enhanced CTSD activity and finally rescued long term potentiation alterations. Our data thus indicate that lowering ADAM30 expression may favor Aß production, thereby contributing to Alzheimer's disease development.


Asunto(s)
Proteínas ADAM/metabolismo , Péptidos beta-Amiloides/metabolismo , Catepsina D/metabolismo , Proteínas ADAM/antagonistas & inhibidores , Proteínas ADAM/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Secuencia de Aminoácidos , Animales , Encéfalo/metabolismo , Encéfalo/patología , Catepsina D/química , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , Células HEK293 , Humanos , Lisosomas/metabolismo , Macrólidos/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Fluorescente , Técnicas de Placa-Clamp , Pepstatinas/farmacología , Interferencia de ARN , ARN Interferente Pequeño/metabolismo
9.
Acta Neuropathol Commun ; 3: 58, 2015 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-26395440

RESUMEN

INTRODUCTION: The application of high-throughput genomic approaches has revealed 24 novel risk loci for Alzheimer's disease (AD). We recently reported that the bridging integrator 1 (BIN1) risk gene is linked to Tau pathology. RESULTS: We used glutathione S-transferase pull-down assays and nuclear magnetic resonance (NMR) experiments to demonstrate that BIN1 and Tau proteins interact directly and then map the interaction between BIN1's SH3 domain and Tau's proline-rich domain (PRD) . Our NMR data showed that Tau phosphorylation at Thr231 weakens the SH3-PRD interaction. Using primary neurons, we found that BIN1-Tau complexes partly co-localize with the actin cytoskeleton; however, these complexes were not observed with Thr231-phosphorylated Tau species. CONCLUSION: Our results show that (i) BIN1 and Tau bind through an SH3-PRD interaction and (ii) the interaction is downregulated by phosphorylation of Tau Thr231 (and potentially other residues). Our study sheds new light on regulation of the BIN1/Tau interaction and opens up new avenues for exploring its complex's role in the pathogenesis of AD.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neuronas/metabolismo , Proteínas Nucleares/metabolismo , Prolina/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Dominios Homologos src/fisiología , Proteínas tau/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Animales Recién Nacidos , Encéfalo/citología , Células Cultivadas , Células HEK293 , Humanos , Espectroscopía de Resonancia Magnética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosforilación/fisiología , Conformación Proteica , Ratas , Transfección , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/genética , Proteínas tau/química , Proteínas tau/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...