Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros













Base de datos
Asunto principal
Intervalo de año de publicación
1.
Microsc Microanal ; 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38447171

RESUMEN

Atom probe tomography (APT) is a unique analytical technique that offers three-dimensional elemental mapping with a spatial resolution down to the sub-nanometer. When APT is applied on complex heterogenous systems and/or under certain experimental conditions, that is, laser illumination, the specimen shape can deviate from an ideal hemisphere. Insufficient consideration of this aspect can introduce artifacts in the reconstructed dataset, ultimately degrading its spatial accuracy. So far, there has been limited investigation into the detailed evolution of emitter shape and its impact on the field-of-view (FOV). In this study, we numerically and experimentally investigated the FOV for asymmetric emitters and its evolution throughout the analysis depth. Our analysis revealed that, for asymmetric emitters, the ions evaporated from the topmost region of the specimen (summit) project approximately to the detector center. Furthermore, we demonstrated the implications of this finding on the FOV location for asymmetric emitters. Based on our findings, the location of the center of the FOV can deviate from the specimen central axis with an evolution depending on the evolution of the emitter shape. This study highlights the importance of accounting for the specimen shape when developing advanced data reconstruction schemes to enhance spatial resolution and accuracy.

2.
Microsc Microanal ; 30(1): 49-58, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38232229

RESUMEN

In this paper, the capability for quantifying the composition of Ba-doped SrTiO layers from an atom probe measurement was explored. Rutherford backscattering spectrometry and time-of-flight/energy elastic recoil detection were used to benchmark the composition where the amount of titanium was intentionally varied between samples. The atom probe results showed a significant divergence from the benchmarked composition. The cause was shown to be a significant oxygen underestimation (≳14 at%). The ratio between oxygen and titanium for the samples varied between 2.6 and 12.7, while those measured by atom probe tomography were lower and covered a narrower range between 1.4 and 1.7. This difference was found to be associated with the oxygen and titanium predominantly field evaporating together as a molecular ion. The evaporation fields and bonding chemistries determined showed inconsistencies for explaining the oxygen underestimation and ion species measured. The measured ion charge state was in excellent agreement with that predicted by the Kingham postionization theory. Only by considering the measured ion species, their evaporation fields, the coordination chemistry, the analysis conditions, and some recently reported density functional theory modeling for oxide field emission were we able to postulate a field emission and oxygen neutral desorption process that may explain our results.

4.
Ultramicroscopy ; 241: 113592, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35988476

RESUMEN

For atom probe tomography, multihits and any associated ion pile-up are viewed as an "Achilles" heel when trying to establish accurate stoichiometric quantification. A significant reason for multihits and ion pile-up is credited to co-evaporation events. The impact is the underestimation of one or more elements present due to detector inadequacies when the field evaporated ions are spatially and temporally close. Nitride materials, especially GaN and AlN, have been shown to suffer a strong field dependent compositional bias, with N having the characteristics for being a species prone to ion pile-up. In this paper we have explored through field dependent measurements on GaN and AlN the associated impact of co-evaporated multihits and ion pile-up. To achieve this a normal CAMECA electrode along with a specially modified GRID electrode, which was designed to manipulate co-evaporated ions and hence ion pile-up, were employed. From our results and in-depth analysis, any co-evaporation and associated ion pile-up is found to be either very small, or not species dependent. Thus, ion pile-up cannot be attributed as the cause for the significant N underestimation observed in these materials.

5.
Microsc Microanal ; : 1-14, 2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35088688

RESUMEN

This paper describes a reconstruction method for atom probe tomography based on a bottom-up approach accounting for (i) the final tip morphology (which is frequently induced by inhomogeneous evaporation probabilities across the tip surface due to laser absorption, heat diffusion effects, and inhomogeneous material properties), (ii) the limited (and changing) field of view, and (iii) the detector efficiency. The reconstruction starts from the final tip morphology and reverses the evaporation sequence through the pseudo-deposition of defined small reconstruction volumes, which are then stacked together to create the full three-dimensional (3D) tip. The subdivision in small reconstruction volumes allows the scheme to account for the changing tip shape and field of view as evaporation proceeds. Atoms within the same small reconstruction volume are reconstructed at once by placing atoms back onto their possible lattice sites through a trajectory-matching process involving simulated and experimental hit maps. As the ejected ion trajectories are simulated using detailed electrostatic modeling inside the chamber, no simplifications have been imposed on the shape of the trajectories, projection laws, or tip surface. We demonstrate the superior performance of our approach over the conventional reconstruction method (Bas) for an asymmetrical tip shape.

6.
Small ; 18(6): e2105776, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34821030

RESUMEN

The spatial and compositional complexity of 3D structures employed in today's nanotechnologies has developed to a level at which the requirements for process development and control can no longer fully be met by existing metrology techniques. For instance, buried parts in stratified nanostructures, which are often crucial for device functionality, can only be probed in a destructive manner in few locations as many existing nondestructive techniques only probe the objects surfaces. Here, it is demonstrated that grazing exit X-ray fluorescence can simultaneously characterize an ensemble of regularly ordered nanostructures simultaneously with respect to their dimensional properties and their elemental composition. This technique is nondestructive and compatible to typically sized test fields, allowing the same array of structures to be studied by other techniques. For crucial parameters, the technique provides sub-nm discrimination capabilities and it does not require access-limited large-scale research facilities as it is compatible to laboratory-scale instrumentation.


Asunto(s)
Nanoestructuras , Nanoestructuras/química , Nanotecnología
8.
Sci Rep ; 11(1): 7788, 2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33833295

RESUMEN

In this study, we report the segregation of magnesium in the grain boundaries of magnesium-doped cuprous oxide (Cu2O:Mg) thin films as revealed by atom probe tomography and the consequences of the dopant presence on the temperature-dependent Hall effect properties. The incorporation of magnesium as a divalent cation was achieved by aerosol-assisted metal organic chemical vapour deposition, followed by thermal treatments under oxidizing conditions. We observe that, in comparison with intrinsic cuprous oxide, the electronic transport is improved in Cu2O:Mg with a reduction of resistivity to 13.3 ± 0.1 Ω cm, despite the reduction of hole mobility in the doped films, due to higher grain-boundary scattering. The Hall carrier concentration dependence with temperature showed the presence of an acceptor level associated with an ionization energy of 125 ± 9 meV, similar to the energy value of a large size impurity-vacancy complex. Atom probe tomography shows a magnesium incorporation of 5%, which is substantially present at the grain boundaries of the Cu2O.

9.
Anal Chem ; 92(16): 11413-11419, 2020 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-32664722

RESUMEN

With the continuous miniaturization and increasing complexity of the devices used in nanotechnology, there is a pressing need for characterization techniques with nm-scale 3D-spatial resolution. Unfortunately, techniques like Secondary Ion Mass Spectrometry (SIMS) fail to reach the required lateral resolution. For this reason, new concepts and approaches, including the combination of different complementary techniques, have been developed in over the past years to try to overcome some of the challenges. Beyond the problem of spatial resolution in a 3D SIMS experiment, one is also faced with the impact of changes in topography during the analysis. These are quite difficult to identify because they originate from the different sputter rates of the various materials and or phases in a heterogeneous system and are notorious at the interfaces between organic and inorganic layers. As each of these materials will erode at a different velocity, accurate 3D-analysis will require means to establish a spatially resolved relation between ion bombardment time and depth. Inevitably such a nonhomogeneous erosion will lead to the development of surface topography. The impact of these effects can be overcome provided one can capture the time and spatially dependent surface erosion (velocity) with high spatial resolution during the course of a profiling experiment. Incorporating a Scanning Probe Microscope (SPM) unit which provides topography measurements with high spatial resolution, into a SIMS tool (e.g., Time of Flight (ToF) SIMS) with means to alternate between SPM and SIMS measurements, is one approach to meet that demand for complementary topographical information allowing accurate 3D chemical imaging. In this paper, the result of integrating a SPM module into a ToF-SIMS system is presented illustrating the improvements in 3D data accuracy which can be obtained when analyzing complex 3D-systems.

10.
Ultramicroscopy ; 210: 112918, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31918069

RESUMEN

With the objective of applying laser-assisted atom probe tomography to compositional analysis within nanoscale InGaAs devices, experimental conditions that may provide an accurate composition estimate were sought by extensively studying an InGaAs blanket film. Overall, the determined arsenic atomic fraction was found to exhibit an electric field dependent deficiency, which was more pronounced at low field conditions. Although the determined group III site-fraction also showed a (weak) field-dependent deficiency at low field conditions, it remained invariant with analysis conditions and in close agreement with the nominal value at higher field. In this study, we investigate and discuss the mechanisms that could potentially contribute to As underestimation. Given the field dependence observed, the phenomena occurring between low and high field conditions are compared. At low field, the tendency of As to field evaporate in significant amounts as multiply charged cluster ions (Asni+ with n as large as 9 and i = 1,2,3) is shown to be a significant source of compositional inaccuracy. These clusters may lead to peak overlap in the mass spectrum (e.g. the peak at 150 Da may represent As42+ or As2+ or both), thereby creating an uncertainty in the quantification. Emitted clusters may also dissociate with the likelihood of neutral generation and multi-hit losses being non-negligible. Experimental studies and density functional theory calculations are presented to characterize cluster stability and its contribution to measurement uncertainty. Under high field conditions, although fewer clusters are detected and the composition appears more accurate, the emergence of two additional mechanisms, i.e., multi-hits and DC evaporation, may degrade the data quality. The challenges in evaluating the impact of all these loss mechanisms are examined in detail. Finally, we show that for InGaAs under UV illumination, due to the laser-tip interaction, the resulting asymmetric electric field distribution across the apex introduces local atomic fraction variations.

11.
Ultramicroscopy ; 194: 221-226, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30216823

RESUMEN

For the very first time, atomic force microscopy is used to determine quantitatively the 3-dimensional shape of an atom probe tip, which is key towards improved accuracy and understanding of artefacts in atom probe tomography. We have successfully measured by atomic force microscopy the apex and shank region of 3 different atom probe tips, of which two show (severe) deviations from a hemisphere due to either non-uniform laser light absorption or the presence of two different materials. Clearly, our method which overcomes the challenge of aligning two very sharp tips on top of each other, offers new pathways to study physical mechanisms in (laser-assisted) atom probe. It represents an important step towards improved reconstruction algorithms as the image formation in atom probe tomography is based on the intricate link between the tip shape (down to the atomic level), the electric field distribution and the ions' flight path towards the detector. Further on, present reconstruction algorithms solely account for a hemispherical tip shape, which does not hold true for most applications and results in complex artefacts. Therefore our method is an attractive novel approach to assess the 3D tip shape.

12.
Opt Express ; 22(15): 17948-58, 2014 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-25089414

RESUMEN

We describe the application of scattering-type near-field optical microscopy to characterize various semiconducting materials using the electron storage ring Metrology Light Source (MLS) as a broadband synchrotron radiation source. For verifying high-resolution imaging and nano-FTIR spectroscopy we performed scans across nanoscale Si-based surface structures. The obtained results demonstrate that a spatial resolution below 40 nm can be achieved, despite the use of a radiation source with an extremely broad emission spectrum. This approach allows not only for the collection of optical information but also enables the acquisition of near-field spectral data in the mid-infrared range. The high sensitivity for spectroscopic material discrimination using synchrotron radiation is presented by recording near-field spectra from thin films composed of different materials used in semiconductor technology, such as SiO2, SiC, SixNy, and TiO2.

13.
Materials (Basel) ; 7(4): 3147-3159, 2014 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-28788611

RESUMEN

The accurate characterization of nanolayered systems is an essential topic for today's developments in many fields of material research. Thin high-k layers and gate stacks are technologically required for the design of current and future electronic devices and can be deposited, e.g., by Atomic Layer Deposition (ALD). However, the metrological challenges to characterize such systems demand further development of analytical techniques. Reference-free Grazing Incidence X-ray Fluorescence (GIXRF) based on synchrotron radiation can significantly contribute to the characterization of such nanolayered systems. GIXRF takes advantage of the incident angle dependence of XRF, in particular below the substrate's critical angle where changes in the X-ray Standing Wave field (XSW) intensity influence the angular intensity profile. The reliable modeling of the XSW in conjunction with the radiometrically calibrated instrumentation at the PTB allows for reference-free, fundamental parameter-based quantitative analysis. This approach is very well suited for the characterization of nanoscaled materials, especially when no reference samples with sufficient quality are available. The capabilities of this method are demonstrated by means of two systems for transistor gate stacks, i.e., Al2O3 high-k layers grown on Si or Si/SiO2 and Sc2O3 layers on InGaAs/InP substrates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA