Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Health Soc Care Deliv Res ; 12(28): 1-217, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39259688

RESUMEN

Background: This research concerns improving the National Health Service health services trans adults need. These include the national specialist Gender Identity Clinics that support people making a medical transition. Not all trans people need to make a medical transition, and transition can take many different paths. Waits to be seen by Gender Identity Clinics are, however, several years long, and there may be significant problems of co-ordination between different aspects of transition-related care, and between transition-related care and general health care. Objectives: The main objectives were to understand: Which factors make services more or less accessible and acceptable to the variety of trans adults? How initiatives for providing more person-centred and integrated care can be successfully implemented and further improved? Design, data sources and participants: An online and paper screening survey was used to gather data on demographics and service use of trans people across the United Kingdom, with 2056 responses. Researchers used survey data to construct five purposive subsamples for individual qualitative interviews, identifying groups of people more likely to experience social exclusion or stigma. There were 65 online interviews. In addition, 23 trans Black people and people of colour attended focus groups. Six case studies were completed: four on initiatives to improve care and two on experiences of particular trans populations. Fifty-five service provider staff and 45 service users were interviewed. Results: The following undermine person-centred co-ordinated care and can lead to experiences of harm: lack of respectful treatment of trans people by general practitioner practices; inadequate funding of services; lack of support during waiting; the extended and challenging nature of Gender Identity Clinic diagnostic assessments, sometimes experienced as adversarial; breakdowns in collaboration between Gender Identity Clinics and general practitioner practices over hormone therapy; lack of National Health Service psychological support for trans people. Case studies indicated ways to improve care, although each has significant unresolved issues: training in trans health care for general practitioners; third-sector peer-support workers for trans people who come to National Health Services; gender services taking a collaborative approach to assessing what people need, clarifying treatment options, benefits and risks; regional general practitioner-led hormone therapy clinics, bringing trans health care into the mainstream; psychology services that support trans people rather than assess them. Limitations: Some contexts of care and experiences of particular groups of trans people were not addressed sufficiently within the scope of the project. While efforts were made to recruit people subject to multiple forms of stigma, there remained gaps in representation. Conclusions and future work: The findings have significant implications for commissioners and providers of existing National Health Services gender services, including recently established pilot services in primary care. In particular they point to the need for assessments for access to transition care to be more collaborative and culturally aware, implying the value of exploring informed consent models for accessing transition-related care. Further research is needed to investigate how far the findings apply with particular subpopulations. Study registration: This study is registered as Research Registry, no. 5235. Funding: This award was funded by the National Institute for Health and Care Research (NIHR) Health and Social Care Delivery Research programme (NIHR award ref: 17/51/08) and is published in full in Health and Social Care Delivery Research; Vol. 12, No. 28. See the NIHR Funding and Awards website for further award information.


This research concerns improving the range of National Health Service health services that trans adults need. Trans people have a different gender from that assigned at birth or in early childhood. Not all need to make a medical transition to express their gender, and transition can take many different forms, including hormone therapy, various kinds of surgery, and other procedures such as hair removal. At the time of writing, trans people over 17 who need to make a medical transition can seek care at one of the United Kingdom's 10 specialist National Health Service Gender Identity Clinics. However, people must wait a very long time before they are seen. Through 110 in-depth interviews, as well as focus groups attended by 23 people, this research explored recent experiences of trans people receiving various kinds of health care. A further 55 interviews investigated the views of National Health Service and voluntary-sector staff involved in delivering trans health care. All of this has led to insights about how services can be improved, and the development of online courses for healthcare staff and for people who use services or support those who use services. The research indicates what can lead to experiences of poor care that is not 'joined up': lack of respectful treatment of trans people by general practitioner practices; inadequate funding of services; lack of support while waiting; the extended and difficult nature of Gender Identity Clinic diagnostic assessments; breakdowns in collaboration between Gender Identity Clinics and general practitioner practices over hormone therapy; lack of National Health Service psychological support for trans people. The research indicates some important ways to improve care: training in trans health care for general practitioners; third-sector peer-support workers for trans people who come to National Health Service services; gender services taking a collaborative approach to assessing what people need, clarifying treatment options, benefits and risks; regional general practitioner-led hormone therapy clinics, bringing trans health care into the mainstream; psychology services that support trans people rather than assessing them.


Asunto(s)
Medicina Estatal , Humanos , Masculino , Femenino , Reino Unido , Adulto , Medicina Estatal/organización & administración , Grupos Focales , Prestación Integrada de Atención de Salud/organización & administración , Personas Transgénero/psicología , Persona de Mediana Edad , Mejoramiento de la Calidad , Investigación Cualitativa , Accesibilidad a los Servicios de Salud/organización & administración , Encuestas y Cuestionarios , Adulto Joven
2.
Nat Commun ; 15(1): 5585, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992040

RESUMEN

MYCN oncogene amplification is frequently observed in aggressive childhood neuroblastoma. Using an unbiased large-scale mutagenesis screen in neuroblastoma-prone transgenic mice, we identify a single germline point mutation in the transcriptional corepressor Runx1t1, which abolishes MYCN-driven tumorigenesis. This loss-of-function mutation disrupts a highly conserved zinc finger domain within Runx1t1. Deletion of one Runx1t1 allele in an independent Runx1t1 knockout mouse model is also sufficient to prevent MYCN-driven neuroblastoma development, and reverse ganglia hyperplasia, a known pre-requisite for tumorigenesis. Silencing RUNX1T1 in human neuroblastoma cells decreases colony formation in vitro, and inhibits tumor growth in vivo. Moreover, RUNX1T1 knockdown inhibits the viability of PAX3-FOXO1 fusion-driven rhabdomyosarcoma and MYC-driven small cell lung cancer cells. Despite the role of Runx1t1 in MYCN-driven tumorigenesis neither gene directly regulates the other. We show RUNX1T1 forms part of a transcriptional LSD1-CoREST3-HDAC repressive complex recruited by HAND2 to enhancer regions to regulate chromatin accessibility and cell-fate pathway genes.


Asunto(s)
Carcinogénesis , Proteína Proto-Oncogénica N-Myc , Neuroblastoma , Animales , Humanos , Ratones , Carcinogénesis/genética , Línea Celular Tumoral , Proteínas Co-Represoras/metabolismo , Proteínas Co-Represoras/genética , Regulación Neoplásica de la Expresión Génica , Histona Demetilasas/metabolismo , Histona Demetilasas/genética , Ratones Noqueados , Ratones Transgénicos , Proteína Proto-Oncogénica N-Myc/genética , Proteína Proto-Oncogénica N-Myc/metabolismo , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
4.
Methods Mol Biol ; 2806: 55-74, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38676796

RESUMEN

Realistic and renewable laboratory models that accurately reflect the distinct clinical features of childhood cancers have enormous potential to speed research progress. These models help us to understand disease biology, develop new research methods, advance new therapies to clinical trial, and implement personalized medicine. This chapter describes methods to generate patient-derived xenograft models of neuroblastoma and rhabdomyosarcoma, two tumor types for which children with high-risk disease have abysmal survival outcomes and survivors have lifelong-debilitating effects from treatment. Further, this protocol addresses model development from diverse clinical tumor tissue samples, subcutaneous and orthotopic engraftment, and approaches to avoid model loss.


Asunto(s)
Neuroblastoma , Rabdomiosarcoma , Ensayos Antitumor por Modelo de Xenoinjerto , Humanos , Animales , Ratones , Neuroblastoma/patología , Neuroblastoma/genética , Rabdomiosarcoma/patología , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Niño , Modelos Animales de Enfermedad , Xenoinjertos , Medicina de Precisión/métodos , Línea Celular Tumoral
5.
Nat Commun ; 15(1): 1385, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360978

RESUMEN

The Eyes Absent proteins (EYA1-4) are a biochemically unique group of tyrosine phosphatases known to be tumour-promoting across a range of cancer types. To date, the targets of EYA phosphatase activity remain largely uncharacterised. Here, we identify Polo-like kinase 1 (PLK1) as an interactor and phosphatase substrate of EYA4 and EYA1, with pY445 on PLK1 being the primary target site. Dephosphorylation of pY445 in the G2 phase of the cell cycle is required for centrosome maturation, PLK1 localization to centrosomes, and polo-box domain (PBD) dependent interactions between PLK1 and PLK1-activation complexes. Molecular dynamics simulations support the rationale that pY445 confers a structural impairment to PBD-substrate interactions that is relieved by EYA-mediated dephosphorylation. Depletion of EYA4 or EYA1, or chemical inhibition of EYA phosphatase activity, dramatically reduces PLK1 activation, causing mitotic defects and cell death. Overall, we have characterized a phosphotyrosine signalling network governing PLK1 and mitosis.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas Serina-Treonina Quinasas , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Tirosina/metabolismo , Mitosis , Centrosoma/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Células HeLa , Proteínas Nucleares/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Transactivadores/metabolismo
6.
Cancer Res ; 83(16): 2716-2732, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37523146

RESUMEN

For one-third of patients with pediatric cancer enrolled in precision medicine programs, molecular profiling does not result in a therapeutic recommendation. To identify potential strategies for treating these high-risk pediatric patients, we performed in vitro screening of 125 patient-derived samples against a library of 126 anticancer drugs. Tumor cell expansion did not influence drug responses, and 82% of the screens on expanded tumor cells were completed while the patients were still under clinical care. High-throughput drug screening (HTS) confirmed known associations between activating genomic alterations in NTRK, BRAF, and ALK and responses to matching targeted drugs. The in vitro results were further validated in patient-derived xenograft models in vivo and were consistent with clinical responses in treated patients. In addition, effective combinations could be predicted by correlating sensitivity profiles between drugs. Furthermore, molecular integration with HTS identified biomarkers of sensitivity to WEE1 and MEK inhibition. Incorporating HTS into precision medicine programs is a powerful tool to accelerate the improved identification of effective biomarker-driven therapeutic strategies for treating high-risk pediatric cancers. SIGNIFICANCE: Integrating HTS with molecular profiling is a powerful tool for expanding precision medicine to support drug treatment recommendations and broaden the therapeutic options available to high-risk pediatric cancers.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Niño , Evaluación Preclínica de Medicamentos , Detección Precoz del Cáncer , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Ensayos Analíticos de Alto Rendimiento/métodos
8.
Sci Adv ; 9(9): eabp8314, 2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36867694

RESUMEN

Gene expression noise is known to promote stochastic drug resistance through the elevated expression of individual genes in rare cancer cells. However, we now demonstrate that chemoresistant neuroblastoma cells emerge at a much higher frequency when the influence of noise is integrated across multiple components of an apoptotic signaling network. Using a JNK activity biosensor with longitudinal high-content and in vivo intravital imaging, we identify a population of stochastic, JNK-impaired, chemoresistant cells that exist because of noise within this signaling network. Furthermore, we reveal that the memory of this initially random state is retained following chemotherapy treatment across a series of in vitro, in vivo, and patient models. Using matched PDX models established at diagnosis and relapse from individual patients, we show that HDAC inhibitor priming cannot erase the memory of this resistant state within relapsed neuroblastomas but improves response in the first-line setting by restoring drug-induced JNK activity within the chemoresistant population of treatment-naïve tumors.


Asunto(s)
Resistencia a Antineoplásicos , Neuroblastoma , Humanos , Apoptosis , Transducción de Señal , Inhibidores de Histona Desacetilasas
9.
Cancer Cell ; 41(4): 660-677.e7, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-37001527

RESUMEN

Pediatric solid and central nervous system tumors are the leading cause of cancer-related death among children. Identifying new targeted therapies necessitates the use of pediatric cancer models that faithfully recapitulate the patient's disease. However, the generation and characterization of pediatric cancer models has significantly lagged behind adult cancers, underscoring the urgent need to develop pediatric-focused cell line resources. Herein, we establish a single-site collection of 261 cell lines, including 224 pediatric cell lines representing 18 distinct extracranial and brain childhood tumor types. We subjected 182 cell lines to multi-omics analyses (DNA sequencing, RNA sequencing, DNA methylation), and in parallel performed pharmacological and genetic CRISPR-Cas9 loss-of-function screens to identify pediatric-specific treatment opportunities and biomarkers. Our work provides insight into specific pathway vulnerabilities in molecularly defined pediatric tumor classes and uncovers biomarker-linked therapeutic opportunities of clinical relevance. Cell line data and resources are provided in an open access portal.


Asunto(s)
Neoplasias Encefálicas , Niño , Humanos , Neoplasias Encefálicas/patología , Línea Celular Tumoral
10.
Int J Cancer ; 152(7): 1399-1413, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36346110

RESUMEN

The mitochondrion is a gatekeeper of apoptotic processes, and mediates drug resistance to several chemotherapy agents used to treat cancer. Neuroblastoma is a common solid cancer in young children with poor clinical outcomes following conventional chemotherapy. We sought druggable mitochondrial protein targets in neuroblastoma cells. Among mitochondria-associated gene targets, we found that high expression of the mitochondrial adenine nucleotide translocase 2 (SLC25A5/ANT2), was a strong predictor of poor neuroblastoma patient prognosis and contributed to a more malignant phenotype in pre-clinical models. Inhibiting this transporter with PENAO reduced cell viability in a panel of neuroblastoma cell lines in a TP53-status-dependant manner. We identified the histone deacetylase inhibitor, suberanilohydroxamic acid (SAHA), as the most effective drug in clinical use against mutant TP53 neuroblastoma cells. SAHA and PENAO synergistically reduced cell viability, and induced apoptosis, in neuroblastoma cells independent of TP53-status. The SAHA and PENAO drug combination significantly delayed tumour progression in pre-clinical neuroblastoma mouse models, suggesting that these clinically advanced inhibitors may be effective in treating the disease.


Asunto(s)
Translocador 2 del Nucleótido Adenina , Antineoplásicos , Inhibidores de Histona Desacetilasas , Ácidos Hidroxámicos , Neuroblastoma , Animales , Ratones , Antineoplásicos/farmacología , Apoptosis , Línea Celular Tumoral , Inhibidores de Histona Desacetilasas/farmacología , Histonas/metabolismo , Ácidos Hidroxámicos/uso terapéutico , Mitocondrias/metabolismo , Neuroblastoma/tratamiento farmacológico , Vorinostat/farmacología , Translocador 2 del Nucleótido Adenina/antagonistas & inhibidores
11.
J Sep Sci ; 45(14): 2508-2519, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35567751

RESUMEN

A liquid chromatography-tandem mass spectrometry method was developed and validated for the simultaneous quantification of vincristine and tariquidar in 10 µL of mouse whole blood using volumetric absorptive microsampling devices. Samples were extracted from the devices and quantified against calibrators prepared in a human blood plasma matrix. Separation of vincristine and tariquidar was achieved using a Shimpack XR ODS III C18 stationary phase and H2 O and methanol mobile phase solvents containing 0.1% formic acid, running a gradient elution at a flow rate of 0.2 mL/min over 6.0 min. The method was linear up to 1200 ng/mL (R2 > 0.99 for both analytes), with calibrator accuracy within ± 15% of the nominal concentrations and analyte coefficient of variance <15% for both vincristine and tariquidar. Pharmacokinetic assessment of both analytes was successfully applied in mice as both single-agent therapy and combination therapy over a 24-h period, and a 2.3-fold increase in vincristine drug exposure was observed in combination with tariquidar. This study validates the use of this approach for longitudinal analysis of drug exposure in animal studies.


Asunto(s)
Espectrometría de Masas en Tándem , Animales , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida/métodos , Humanos , Ratones , Quinolinas , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem/métodos , Vincristina
12.
FEBS J ; 289(13): 3854-3875, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35080351

RESUMEN

MRP1 (ABCC1) is a membrane transporter that confers multidrug resistance in cancer cells by exporting chemotherapeutic agents, often in a reduced glutathione (GSH)-dependent manner. This transport activity can be altered by compounds (modulators) that block drug transport while simultaneously stimulating GSH efflux by MRP1. In MRP1-expressing cells, modulator-stimulated GSH efflux can be sufficient to deplete GSH and increase sensitivity to chemotherapy, enhancing cancer cell death. Further development of clinically useful MRP1 modulators requires a better mechanistic understanding of modulator binding and its relationship to GSH binding and transport. Here, we explore the mechanism of two MRP1 small molecule modulators, 5681014 and 7914321, in relation to a bipartite substrate-binding cavity of MRP1. Binding of these modulators to MRP1 was dependent on the presence of GSH but not its reducing capacity. Accordingly, the modulators poorly inhibited organic anion transport by K332L-mutant MRP1, where GSH binding and transport is limited. However, the inhibitory activity of the modulators was also diminished by mutations that limit E2 17ßG but spare GSH-conjugate binding and transport (W553A, M1093A, W1246A), suggesting overlap between the E2 17ßG and modulator binding sites. Immunoblots of limited trypsin digests of MRP1 suggest that binding of GSH, but not the modulators, induces a conformation change in MRP1. Together, these findings support the model, in which GSH binding induces a conformation change that facilitates binding of MRP1 modulators, possibly in a proposed hydrophobic binding pocket of MRP1. This study may facilitate the structure-guided design of more potent and selective MRP1 modulators.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Proteínas Asociadas a Resistencia a Múltiples Medicamentos , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Sitios de Unión , Transporte Biológico , Glutatión/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo
13.
Mol Ther ; 30(3): 1119-1134, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-34998954

RESUMEN

Neuroblastoma is a deadly childhood cancer arising in the developing sympathetic nervous system. High-risk patients are currently treated with intensive chemotherapy, which is curative in only 50% of children and leaves some surviving patients with life-long side effects. microRNAs (miRNAs) are critical regulators of neural crest development and are deregulated during neuroblastoma tumorigenesis, making miRNA-based drugs an attractive therapeutic avenue. A functional screen of >1,200 miRNA mimics was conducted in neuroblastoma cell lines to discover miRNAs that sensitized cells to low doses (30% inhibitory concentration [IC30]) of doxorubicin and vincristine chemotherapy used in the treatment of the disease. Three miRNAs, miR-99b-5p, miR-380-3p, and miR-485-3p, had potent chemosensitizing activity with doxorubicin in multiple models of high-risk neuroblastoma. These miRNAs underwent genomic loss in a subset of neuroblastoma patients, and low expression predicted poor survival outcome. In vitro functional assays revealed each of these miRNAs enhanced the anti-proliferative and pro-apoptotic effects of doxorubicin. We used RNA sequencing (RNA-seq) to show that miR-99b-5p represses neuroblastoma dependency genes LIN28B and PHOX2B both in vitro and in patient-derived xenograft (PDX) tumors. Luciferase reporter assays demonstrate that PHOX2B is a direct target of miR-99b-5p. We anticipate that restoring the function of the tumor-suppressive miRNAs discovered here may be a valuable therapeutic strategy for the treatment of neuroblastoma patients.


Asunto(s)
MicroARNs , Neuroblastoma , Niño , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética
14.
Br J Cancer ; 126(3): 482-491, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34471258

RESUMEN

BACKGROUND: Minimal residual disease (MRD) measurement is a cornerstone of contemporary acute lymphoblastic leukaemia (ALL) treatment. The presence of immunoglobulin (Ig) and T cell receptor (TCR) gene recombinations in leukaemic clones allows widespread use of patient-specific, DNA-based MRD assays. In contrast, paediatric solid tumour MRD remains experimental and has focussed on generic assays targeting tumour-specific messenger RNA, methylated DNA or microRNA. METHODS: We examined the feasibility of using whole-genome sequencing (WGS) data to design tumour-specific polymerase chain reaction (PCR)-based MRD tests (WGS-MRD) in 18 children with high-risk relapsed cancer, including ALL, high-risk neuroblastoma (HR-NB) and Ewing sarcoma (EWS) (n = 6 each). RESULTS: Sensitive WGS-MRD assays were generated for each patient and allowed quantitation of 1 tumour cell per 10-4 (0.01%)-10-5 (0.001%) mononuclear cells. In ALL, WGS-MRD and Ig/TCR-MRD were highly concordant. WGS-MRD assays also showed good concordance between quantitative PCR and droplet digital PCR formats. In serial clinical samples, WGS-MRD correlated with disease course. In solid tumours, WGS-MRD assays were more sensitive than RNA-MRD assays. CONCLUSIONS: WGS facilitated the development of patient-specific MRD tests in ALL, HR-NB and EWS with potential clinical utility in monitoring treatment response. WGS data could be used to design patient-specific MRD assays in a broad range of tumours.


Asunto(s)
Biomarcadores de Tumor/genética , Reordenamiento Génico , Neoplasia Residual/patología , Neuroblastoma/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Sarcoma de Ewing/patología , Secuenciación Completa del Genoma/métodos , Adolescente , Neoplasias Óseas/sangre , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Proteína Proto-Oncogénica N-Myc/genética , Neoplasia Residual/genética , Neuroblastoma/sangre , Neuroblastoma/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/sangre , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteína Proto-Oncogénica c-fli-1/genética , Receptores de Antígenos de Linfocitos T/genética , Sarcoma de Ewing/sangre , Sarcoma de Ewing/genética , Regulador Transcripcional ERG/genética
15.
Expert Opin Drug Discov ; 17(2): 167-179, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34807782

RESUMEN

INTRODUCTION: Neuroblastoma is a cancer of the sympathetic nervous system that causes up to 15% of cancer-related deaths among children. Among the ~1,000 newly diagnosed cases per year in Europe, more than half are classified as high-risk, with a 5-year survival rate <50%. Current multimodal treatments have improved survival among these patients, but relapsed and refractory tumors remain a major therapeutic challenge. A number of new methodologies are paving the way for the development of more effective and safer therapies to ultimately improve outcomes for high-risk patients. AREAS COVERED: The authors provide a critical review on methodological advances aimed at providing new therapeutic opportunities for neuroblastoma patients, including preclinical models of human disease, generation of omics data to discover new therapeutic targets, and artificial intelligence-based technologies to implement personalized treatments. EXPERT OPINION: While survival of childhood cancer has improved over the past decades, progress has been uneven. Still, survival is dismal for some cancers, including high-risk neuroblastoma. Embracing new technologies (e.g. molecular profiling of tumors, 3D in vitro models, etc.), international collaborative efforts and the incorporation of new therapies (e.g. RNA-based therapies, epigenetic therapies, immunotherapy) will ultimately lead to more effective and safer therapies for these subgroups of neuroblastoma patients.


Asunto(s)
Inteligencia Artificial , Neuroblastoma , Niño , Terapia Combinada , Humanos , Inmunoterapia , Terapia Molecular Dirigida , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/patología
16.
EMBO Mol Med ; 14(4): e14608, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-34927798

RESUMEN

Biomarkers which better match anticancer drugs with cancer driver genes hold the promise of improved clinical responses and cure rates. We developed a precision medicine platform of rapid high-throughput drug screening (HTS) and patient-derived xenografting (PDX) of primary tumor tissue, and evaluated its potential for treatment identification among 56 consecutively enrolled high-risk pediatric cancer patients, compared with conventional molecular genomics and transcriptomics. Drug hits were seen in the majority of HTS and PDX screens, which identified therapeutic options for 10 patients for whom no targetable molecular lesions could be found. Screens also provided orthogonal proof of drug efficacy suggested by molecular analyses and negative results for some molecular findings. We identified treatment options across the whole testing platform for 70% of patients. Only molecular therapeutic recommendations were provided to treating oncologists and led to a change in therapy in 53% of patients, of whom 29% had clinical benefit. These data indicate that in vitro and in vivo drug screening of tumor cells could increase therapeutic options and improve clinical outcomes for high-risk pediatric cancer patients.


Asunto(s)
Antineoplásicos , Neoplasias , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Niño , Modelos Animales de Enfermedad , Genómica/métodos , Humanos , Neoplasias/patología , Medicina de Precisión/métodos , Ensayos Antitumor por Modelo de Xenoinjerto
17.
J Adolesc Young Adult Oncol ; 11(2): 211-222, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34297633

RESUMEN

Purpose: Involvement of adolescent and young adult (AYAs) cancer survivors as consumers in research is increasingly encouraged, yet few studies have identified the feasibility and acceptability of methods used to involve them. We aimed to identify: (1) How feasible and acceptable is a consumer-driven, workshop-based research priority-setting approach? And (2) what research priorities do Australian AYA consumers endorse? Methods: AYA cancer survivors diagnosed 15-30 years old and currently younger than 35 years were invited to participate. The AYAs completed a pre-workshop survey to rank their top three priorities from the United Kingdom-based James Lind Alliance list, participated in a 90-minute focus group, and completed a post-workshop evaluation survey. We assessed the workshop feasibility by reviewing considerations, challenges, and enablers of success in the planning and conduct processes. Acceptability was assessed through participants' evaluation surveys and facilitators' informal reflections. The top three priorities were determined from pre-workshop surveys and focus group data. Results: Six survivors participated (M age = 24.2 years, M = 5 years post-treatment, 83% female). All reported that the workshop was an acceptable way to engage with researchers. Costs and recruitment challenges limited the workshop's feasibility. The AYAs' top priority was: What psychological support package improves psychological well-being, social functioning, and mental health during and after treatment?Discussion: The AYA survivors found our workshop to be an acceptable way to engage in research priority-setting. However, the feasibility of this approach depends on the resources available to researchers. Future research is needed to define the optimal method of engagement: What is most acceptable for AYAs and feasible for researchers?


Asunto(s)
Supervivientes de Cáncer , Neoplasias , Adolescente , Adulto , Australia , Supervivientes de Cáncer/psicología , Femenino , Humanos , Masculino , Neoplasias/terapia , Investigación , Encuestas y Cuestionarios , Reino Unido , Adulto Joven
18.
Curr Protoc ; 1(11): e310, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34826366

RESUMEN

Neuroblastoma, the most common extracranial solid tumor in young children, arises from the sympathetic nervous system. Our understanding of neuroblastoma has been improved by the development of both genetically engineered and xenograft mouse models of the disease. Anatomical pathology is an essential component of the phenotyping of mouse models of cancer, characterizing the morphologic effects of genetic manipulation and drug treatment. The Th-MYCN model, the most widely used of several genetically engineered mouse models of neuroblastoma, was established by targeted expression of the human MYCN gene to murine neural crest cells under the control of the rat tyrosine hydroxylase promoter. Neuroblastoma development in Th-MYCN mice is preceded by neuroblast hyperplasia-the persistence and proliferation of neural crest-derived neuroblasts within the sympathetic autonomic ganglia. The neuroblastomas that subsequently develop morphologically resemble human neuroblastoma and carry chromosomal gains and losses in regions syntenic with those observed in human tumors. In this overview, we describe the essential pathologic features for investigators when assessing mouse models of neuroblastoma. We outline human neuroblastoma as the foundation for understanding the murine disease, followed by details of the murine sympathetic ganglia from which neuroblastoma arises. Sympathetic ganglia, both with and without neuroblast hyperplasia, are described. The macroscopic and microscopic features of murine neuroblastoma are explained, including assessment of xenografts and tumors following drug treatment. An approach to experimental design is also detailed. Increased understanding of the pathology of murine neuroblastoma should improve reproducibility and comparability of research findings and assist investigators working with mouse models of neuroblastoma. © 2021 Wiley Periodicals LLC.


Asunto(s)
Modelos Animales de Enfermedad , Neuroblastoma/patología , Animales , Humanos , Ratones , Ratones Transgénicos , Proteína Proto-Oncogénica N-Myc/genética , Neuroblastoma/genética , Ratas , Reproducibilidad de los Resultados
19.
Clin Cancer Res ; 27(15): 4338-4352, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33994371

RESUMEN

PURPOSE: We investigated whether targeting chromatin stability through a combination of the curaxin CBL0137 with the histone deacetylase (HDAC) inhibitor, panobinostat, constitutes an effective multimodal treatment for high-risk neuroblastoma. EXPERIMENTAL DESIGN: The effects of the drug combination on cancer growth were examined in vitro and in animal models of MYCN-amplified neuroblastoma. The molecular mechanisms of action were analyzed by multiple techniques including whole transcriptome profiling, immune deconvolution analysis, immunofluorescence, flow cytometry, pulsed-field gel electrophoresis, assays to assess cell growth and apoptosis, and a range of cell-based reporter systems to examine histone eviction, heterochromatin transcription, and chromatin compaction. RESULTS: The combination of CBL0137 and panobinostat enhanced nucleosome destabilization, induced an IFN response, inhibited DNA damage repair, and synergistically suppressed cancer cell growth. Similar synergistic effects were observed when combining CBL0137 with other HDAC inhibitors. The CBL0137/panobinostat combination significantly delayed cancer progression in xenograft models of poor outcome high-risk neuroblastoma. Complete tumor regression was achieved in the transgenic Th-MYCN neuroblastoma model which was accompanied by induction of a type I IFN and immune response. Tumor transplantation experiments further confirmed that the presence of a competent adaptive immune system component allowed the exploitation of the full potential of the drug combination. CONCLUSIONS: The combination of CBL0137 and panobinostat is effective and well-tolerated in preclinical models of aggressive high-risk neuroblastoma, warranting further preclinical and clinical investigation in other pediatric cancers. On the basis of its potential to boost IFN and immune responses in cancer models, the drug combination holds promising potential for addition to immunotherapies.


Asunto(s)
Carbazoles/administración & dosificación , Carbazoles/farmacología , Cromatina/efectos de los fármacos , Inhibidores de Histona Desacetilasas/administración & dosificación , Inhibidores de Histona Desacetilasas/farmacología , Neuroblastoma/tratamiento farmacológico , Panobinostat/administración & dosificación , Panobinostat/farmacología , Animales , Combinación de Medicamentos , Evaluación Preclínica de Medicamentos , Ratones , Células Tumorales Cultivadas
20.
Cell Death Dis ; 12(3): 268, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33712556

RESUMEN

Targeting cell division by chemotherapy is a highly effective strategy to treat a wide range of cancers. However, there are limitations of many standard-of-care chemotherapies: undesirable drug toxicity, side-effects, resistance and high cost. New small molecules which kill a wide range of cancer subtypes, with good therapeutic window in vivo, have the potential to complement the current arsenal of anti-cancer agents and deliver improved safety profiles for cancer patients. We describe results with a new anti-cancer small molecule, WEHI-7326, which causes cell cycle arrest in G2/M, cell death in vitro, and displays efficacious anti-tumor activity in vivo. WEHI-7326 induces cell death in a broad range of cancer cell lines, including taxane-resistant cells, and inhibits growth of human colon, brain, lung, prostate and breast tumors in mice xenografts. Importantly, the compound elicits tumor responses as a single agent in patient-derived xenografts of clinically aggressive, treatment-refractory neuroblastoma, breast, lung and ovarian cancer. In combination with standard-of-care, WEHI-7326 induces a remarkable complete response in a mouse model of high-risk neuroblastoma. WEHI-7326 is mechanistically distinct from known microtubule-targeting agents and blocks cells early in mitosis to inhibit cell division, ultimately leading to apoptotic cell death. The compound is simple to produce and possesses favorable pharmacokinetic and toxicity profiles in rodents. It represents a novel class of anti-cancer therapeutics with excellent potential for further development due to the ease of synthesis, simple formulation, moderate side effects and potent in vivo activity. WEHI-7326 has the potential to complement current frontline anti-cancer drugs and to overcome drug resistance in a wide range of cancers.


Asunto(s)
Antimitóticos/farmacología , Resistencia a Antineoplásicos , Neoplasias/tratamiento farmacológico , Animales , Antimitóticos/farmacocinética , Antimitóticos/toxicidad , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Femenino , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Células Hep G2 , Humanos , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Desnudos , Mitosis/efectos de los fármacos , Neoplasias/patología , Células PC-3 , Ratas Sprague-Dawley , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...