Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Agric Food Chem ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958707

RESUMEN

Pimelea poisoning of cattle causes distinct symptoms and frequently death, attributable to the toxin simplexin. Pimelea poisoning was induced via addition of ground Pimelea trichostachya plant to the daily feed in a three-month trial with Droughtmaster steers. The trial tested four potential mitigation treatments, namely, biochar, activated biochar, bentonite, and a bacterial inoculum, and incorporated negative and positive control groups. All treatments tested were unable to prevent the development of simplexin poisoning effects. However, steers consuming a bentonite adsorbent together with Pimelea showed lesser rates-of-decline for body weight (P < 0.05) and four hematological parameters (P < 0.02), compared to the positive control group fed Pimelea only. Microbiome analysis revealed that despite displaying poisoning symptoms, the rumen microbial populations of animals receiving Pimelea were very resilient, with dominant bacterial populations maintained over time. Unexpectedly, clinical edema developed in some animals up to 2 weeks after Pimelea dosing was ceased.

2.
Plants (Basel) ; 13(10)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38794412

RESUMEN

Pimelea trichostachya Lindl. is a native Australian forb responsible for livestock poisoning and reducing the productivity and sustainability of grazing enterprises. This study was conducted as a pot trial under controlled conditions to investigate an effective chemical management strategy for P. trichostachya, a method that did not leave standing dead plant material, as such material can also be toxic to grazing cattle. Three herbicides, including one pre-emergence (tebuthiuron) and two post-emergence herbicides (2,4-D and metsulfuron-methyl), were tested in pot trials for their efficacy on P. trichostachya. Results showed that tebuthiuron applied as either a granular (10% active ingredient, a.i.) or pelleted (20% a.i.) form efficiently reduced the emergence of P. trichostachya seedlings. Although some seedlings emerged, they perished within 7 days post treatment, leaving no residual plant matter. Testing now needs to be undertaken under field conditions to validate the findings within vegetation communities where potential non-target impacts need to be accounted for as well. The post-emergence application of 2,4-D and metsulfuron-methyl demonstrated that the highest efficacy and reduced application rates were achieved by treating earlier growth stages (i.e., seedlings) of P. trichostachya plants. In addition, the amount of toxic dead plant material was minimized due to the faster degradation of these small plants. These findings offer practical, cost-effective solutions for sustaining grazing lands from P. trichostachya challenges.

3.
Environ Res ; 257: 119274, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38821456

RESUMEN

Bracken fern (Pteridium spp.) is a highly problematic plant worldwide due to its toxicity in combination with invasive properties on former farmland, in deforested areas and on disturbed natural habitats. The carcinogenic potential of bracken ferns has caused scientific and public concern for six decades. Its genotoxic effects are linked to illudane-type glycosides (ITGs), their aglycons and derivatives. Ptaquiloside is considered the dominating ITG, but with significant contributions from other ITGs. The present review aims to compile evidence regarding environmental pollution by bracken fern ITGs, in the context of their human and animal health implications. The ITG content in bracken fern exhibits substantial spatial, temporal, and chemotaxonomic variation. Consumption of bracken fern as food is linked to human gastric cancer but also causes urinary bladder cancers in bovines browsing on bracken. Genotoxic metabolites are found in milk and meat from bracken fed animals. ITG exposure may also take place via contaminated water with recent data pointing to concentrations at microgram/L-level following rain events. Airborne ITG-exposure from spores and dust has also been documented. ITGs may synergize with major biological and environmental carcinogens like papillomaviruses and Helicobacter pylori to induce cancer, revealing novel instances of chemical and biological co-carcinogenesis. Thus, the emerging landscape from six decades of bracken research points towards a global environmental problem with increasingly complex health implications.

4.
Org Biomol Chem ; 22(14): 2863-2876, 2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38525790

RESUMEN

Pimelea poisoning of cattle is toxicologically linked to the activation of bovine protein kinase C (PKC) by the plant-derived toxin simplexin. To understand the affinity of PKC for simplexin, we performed molecular dynamics (MD) studies of simplexin, simplexin analogues, and several other activators of PKC. Binding enthalpy calculations indicated that simplexin had the strongest affinity for PKCα-C1B among the activators studied. Key to simplexin's affinity is its ability to form more hydrogen bonds to PKC, compared to the other activators. The C-3 carbonyl group and C-20 hydroxyl group of simplexin were identified as especially important for stabilizing the PKC binding interaction. The hydrophobic alkyl chain of simplexin induces deep membrane embedding of the PKC-simplexin complex, enhancing the protein-ligand hydrogen bonding. Our findings align with previous experiments on structure-activity relationships (SAR) for simplexin analogues, and provide insights that may guide the development of interventions or treatments for Pimelea poisoning.


Asunto(s)
Alcaloides , Proteína Quinasa C , Bovinos , Animales , Proteína Quinasa C/metabolismo , Simulación de Dinámica Molecular , Terpenos , Unión Proteica
5.
Toxins (Basel) ; 16(1)2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38251258

RESUMEN

Stingless bee honeys (SBHs) from Australian and Malaysian species were analysed using ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) for the presence of pyrrolizidine alkaloids (PAs) and the corresponding N-oxides (PANOs) due to the potential for such hepatotoxic alkaloids to contaminate honey as a result of bees foraging on plants containing these alkaloids. Low levels of alkaloids were found in these SBHs when assessed against certified PA standards in targeted analysis. However, certain isomers were identified using untargeted analysis in a subset of honeys of Heterotrigona itama which resulted in the identification of a PA weed species (Ageratum conyzoides) near the hives. The evaluation of this weed provided a PA profile matching that of the SBH of H. itama produced nearby, and included supinine, supinine N-oxide (or isomers) and acetylated derivatives. These PAs lacking a hydroxyl group at C7 are thought to be less hepatoxic. However, high levels were also observed in SBH (and in A. conyzoides) of a potentially more toxic diester PA corresponding to an echimidine isomer. Intermedine, the C7 hydroxy equivalent of supinine, was also observed. Species differences in nectar collection were evident as the same alkaloids were not identified in SBH of G. thoracica from the same location. This study highlights that not all PAs and PANOs are identified using available standards in targeted analyses and confirms the need for producers of all types of honey to be aware of nearby potential PA sources, particularly weeds.


Asunto(s)
Ageratum , Miel , Abuso de Marihuana , Alcaloides de Pirrolicidina , Abejas , Animales , Espectrometría de Masas en Tándem , Australia , Alcaloides de Pirrolicidina/toxicidad , Óxidos
6.
J Appl Microbiol ; 134(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37968133

RESUMEN

AIM: Postharvest loss of potatoes at the peak of harvest is of global concern. This study aimed to determine the quality of stored processed potato products based on fungal composition, mycotoxin contamination, and fungal enzyme activity. MATERIALS AND METHODS: Potato products from three cultivars (Caruso, Marabel, and Nicola) were grouped as peeled or unpeeled, oven- or sun-dried, and all samples were in flour form. Samples were incubated separately for 6 weeks at 25%, 74%, and 87% relative humidities (RH) at 25°C. The pH, moisture content (MC), visible deterioration, mycotoxin, fungal identity by DNA sequencing, and enzyme activity were determined. RESULTS: Results of grouped products (based on variety, drying, and peeling method) revealed that MC increased in the oven-dried samples and the pH value reduced after incubation. About 26% of the products at 87% RH showed visible deterioration, low amounts of fumonisin were detected in fermented potato product and nine fungal genera were identified across the three RH levels. Enzyme activities by Aspergillus niger, Fusarium circinatum, and Rhizopus stolonifer isolates were confirmed. CONCLUSION: RH influenced deterioration and fungal activities in some stored processed potato products. Low levels of fumonisin were detected.


Asunto(s)
Fumonisinas , Micotoxinas , Solanum tuberosum , Micotoxinas/análisis , Solanum tuberosum/química , Humedad , Aspergillus niger
7.
Toxins (Basel) ; 15(9)2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37755977

RESUMEN

Pimelea poisoning of cattle is a unique Australian toxic condition caused by the daphnane orthoester simplexin present in native Pimelea pasture plants. Rumen microorganisms have been proposed to metabolise simplexin by enzymatic reactions, likely at the orthoester and epoxide moieties of simplexin, but a metabolic pathway has not been confirmed. This study aimed to investigate this metabolic pathway through the analysis of putative simplexin metabolites. Purified simplexin was hydrolysed with aqueous hydrochloric acid and sulfuric acid to produce target metabolites for UPLC-MS/MS analysis of fermentation fluid samples, bacterial isolate samples, and other biological samples. UPLC-MS/MS analysis identified predicted hydrolysed products from both acid hydrolysis procedures with MS breakdown of these putative products sharing high-resolution accurate mass (HRAM) fragmentation ions with simplexin. However, targeted UPLC-MS/MS analysis of the biological samples failed to detect the H2SO4 degradation products, suggesting that the rumen microorganisms were unable to produce similar simplexin degradation products at detectable levels, or that metabolites, once formed, were further metabolised. Overall, in vitro acid hydrolysis was able to hydrolyse simplexin at the orthoester and epoxide functionalities, but targeted UPLC-MS/MS analysis of biological samples did not detect any of the identified simplexin hydrolysis products.


Asunto(s)
Thymelaeaceae , Toxinas Biológicas , Animales , Bovinos , Hidrólisis , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Australia , Cromatografía Líquida de Alta Presión
8.
Toxins (Basel) ; 15(6)2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37368675

RESUMEN

Pimelea is a genus of about 140 plant species, some of which are well-known for causing animal poisoning resulting in significant economic losses to the Australian livestock industry. The main poisonous species/subspecies include Pimelea simplex (subsp. simplex and subsp. continua), P. trichostachya and P. elongata (generally referred to as Pimelea). These plants contain a diterpenoid orthoester toxin, called simplexin. Pimelea poisoning is known to cause the death of cattle (Bos taurus and B. indicus) or weaken surviving animals. Pimelea species are well-adapted native plants, and their diaspores (single seeded fruits) possess variable degrees of dormancy. Hence, the diaspores do not generally germinate in the same recruitment event, which makes management difficult, necessitating the development of integrated management strategies based on infestation circumstances (e.g., size and density). For example, the integration of herbicides with physical control techniques, competitive pasture establishment and tactical grazing could be effective in some situations. However, such options have not been widely adopted at the field level to mitigate ongoing management challenges. This systematic review provides a valuable synthesis of the current knowledge on the biology, ecology, and management of poisonous Pimelea species with a focus on the Australian livestock industry while identifying potential avenues for future research.


Asunto(s)
Diterpenos , Intoxicación por Plantas , Thymelaeaceae , Animales , Bovinos , Plantas Tóxicas , Australia , Ganado , Intoxicación por Plantas/veterinaria
9.
Plants (Basel) ; 12(11)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37299091

RESUMEN

Pimelea trichostachya Lindl is a little-understood Australian native plant, with irregular field emergence, causing significant poisoning to grazing livestock. The study aims to examine the form of dormancy exhibited by P. trichostachya and determine how key environmental conditions, such as alternating temperature and light conditions, moisture availability, substrate pH and burial depth, affect its germination and emergence. The study concludes that P. trichostachya has a complex dormancy mechanism. This comprises a physical component that can be partly removed by fruit scarification, a metabolic dormancy that can be overcome by gibberellic acid (GA3), and a suspected third mechanism based on a water-soluble germination inhibitor. The results showed that scarified single seeded fruit (hereafter seed) with GA3 treatment gave the highest germination percentage (86 ± 3%) at 25/15 °C, with good germination rates at other temperature regimes. Light exposure stimulated germination, but a significant proportion of seeds still germinated in the dark. The study also found that seeds could germinate under water-limited conditions and a wide range of pH levels (4 to 8). Seedling emergence was inhibited when seeds were buried below 3 cm in soil. Pimelea trichostachya emergence in the field commonly occurs from Autumn to Spring. Understanding its dormancy mechanism and recognizing its triggers for germination will enable better prediction of outbreaks. This can help landholders prepare for emergence and help manage seedbank build-up in pastures and crops.

10.
J Agric Food Chem ; 70(21): 6530-6539, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35584080

RESUMEN

Trehalulose, a rare sucrose isomer, is a dominant sugar in stingless bee honey, with traces of the trisaccharide erlose. Incubating sucrose solutions with macerated stingless bee parts (head, thorax, and abdomen) from Tetragonula carbonaria, we observed that sucrose isomerization occurs predominantly in the head incubations, with trehalulose constituting 76.2-80.0% of total detected sugar. By contrast, sucrose hydrolysis occurred in stingless bee abdomen incubations, with glucose and fructose observed as 48.6-51.7% and 48.3-49.7%, respectively, of total detected sugar. Incubating glucose/fructose (1:1) solutions with any bee part did not result in trehalulose formation. In addition, by tracing the 13C isotope-labeled monosaccharide moieties throughout the isomerization from sucrose to trehalulose and erlose, for the first time, the mechanism was established as an enzymatic double displacement reaction. Sucrose acts as a glucose donor giving a ß-d-glucosyl enzyme intermediate with fructose release as demonstrated by mixed isotope products. Glucosylation of fructose (inter- or intramolecularly) with isomerization forms trehalulose (favorable), while glucosylation of sucrose forms erlose (less favorable).


Asunto(s)
Néctar de las Plantas , Sacarosa , Animales , Australia , Abejas , Disacáridos , Fructosa , Glucosa , Azúcares
11.
Food Chem ; 373(Pt B): 131566, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-34823933

RESUMEN

Stingless bee honey (SBH) of four stingless bee species (Heterotrigona itama, Geniotrigona thoracica, Tetragonula carbonaria, and Tetragonula hockingsi) from two geographic regions (Malaysia and Australia, n = 36) were studied for their physicochemical parameters, including total phenolic and multi-elemental contents. Sugar analysis confirmed the prominent presence of trehalulose in all samples. All SBH failed to meet the CODEX Standard for honey moisture, free acidity, and total fructose plus glucose levels. One-way ANOVA, principal component analysis (PCA) and hierarchical component analysis (HCA) confirm distinctive differences between Australian and Malaysian SBH with Australian SBH having significantly (P < 0.05) higher pH, total phenolic, total mineral, and electrical conductivity attributes. Toxic elements in all SBH were much lower than standard CODEX limit. The species G. thoracica produced honey with significantly (P < 0.05) higher trehalulose than both Australian bee species. This research will add value to SBH and hasten new international standards ensuring commercial viability, safety, quality, and marketability of SBH.


Asunto(s)
Miel , Animales , Australia , Abejas , Disacáridos , Azúcares
12.
J Agric Food Chem ; 69(35): 10292-10300, 2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34382780

RESUMEN

The beneficial disaccharide, trehalulose, is a feature of stingless bee honey, while not dominant in any other foods. By experimentally feeding sugar solutions to confined colonies of the Australian stingless bee Tetragonula carbonaria, the origin of trehalulose has now been established. Complete conversion of fed sucrose was observed, by analysis of the honey, forming trehalulose (64-72%) with lesser erlose (18-23%), fructose (9-12%), and minor glucose detected. Remarkably, feeding solutions of glucose/fructose (1:1) mixtures did not result in trehalulose/erlose formation. Hence, stingless bees with natural access to floral nectar high in sucrose will produce honey high in trehalulose, with its associated beneficial properties. Any temptation to artificially increase trehalulose content by feeding sucrose to stingless bees would produce "fake" honey lacking key natural phytochemicals available to the foraging bee. The sucrose-fed fake and natural honey were however readily distinguished via isotope ratio mass spectrometry δ13C values, to combat such potential indirect adulteration.


Asunto(s)
Miel , Animales , Australia , Abejas , Disacáridos , Azúcares
13.
Toxins (Basel) ; 13(6)2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071579

RESUMEN

The leguminous plant species, Indigofera linnaei and Indigofera spicata are distributed throughout the rangeland regions of Australia and the compound indospicine (L-2-amino-6-amidinohexanoic acid) found in these palatable forage plants acts as a hepatotoxin and can accumulate in the meat of ruminant livestock and wild camels. In this study, bovine rumen fluid was cultivated in an in vitro fermentation system provided with Indigofera spicata plant material and the ability of the resulting mixed microbial populations to degrade indospicine was determined using UPLC-MS/MS over a 14 day time period. The microbial populations of the fermentation system were determined using 16S rRNA gene amplicon sequencing and showed distinct, time-related changes occurring as the rumen-derived microbes adapted to the fermentation conditions and the nutritional substrates provided by the Indigofera plant material. Within eight days of commencement, indospicine was completely degraded by the microbes cultivated within the fermenter, forming the degradation products 2-aminopimelamic acid and 2-aminopimelic acid within a 24 h time period. The in vitro fermentation approach enabled the development of a specifically adapted, mixed microbial population which has the potential to be used as a rumen drench for reducing the toxic side-effects and toxin accumulation associated with ingestion of Indigofera plant material by grazing ruminant livestock.


Asunto(s)
Bacterias/metabolismo , Indigofera/metabolismo , Norleucina/análogos & derivados , Rumen/microbiología , Animales , Bovinos , Fermentación , Microbiota , Norleucina/metabolismo
14.
Food Addit Contam Part B Surveill ; 14(3): 193-205, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34096475

RESUMEN

Honey is a popular agricultural product containing mostly sugars and water, but due to its nutritious components and natural production by honeybees (Apis mellifera) from floral nectar, it is marketed as a premium health food item. As environmental monitors, honeybees can potentially transfer environmental contaminants to honey. Whilst pesticides can have ubiquitous presence in agricultural and urban areas, polycyclic aromatic hydrocarbons (PAHs) can be more prevalent in higher density urban/industrial environments. Australian beehives are customarily located in rural areas/forests, but it is increasingly popular to keep hives in urban areas. This study assessed the levels of environmental contaminants in honeys (n = 212) from Queensland/Australian sources including rural, peri-urban and urban areas. Honey samples were analysed by LC-MS/MS and GC-MS/MS for 53 herbicides, 83 pesticides, 18 breakdown products (for certain pesticides/herbicides) and 33 PAHs and showed low/negligible pesticide, herbicide and PAHs contamination, consistent regardless of honey origins.


Asunto(s)
Herbicidas , Miel , Plaguicidas , Hidrocarburos Policíclicos Aromáticos , Animales , Australia , Abejas , Cromatografía Liquida , Contaminación de Alimentos , Miel/análisis , Plaguicidas/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Queensland , Espectrometría de Masas en Tándem
15.
Anal Bioanal Chem ; 413(20): 5121-5133, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34184103

RESUMEN

In the present paper, we describe how a robust and fundamental methodology was developed for extraction and determination of a principal natural toxin compound, simplexin, from a series of bulk biocomposites. These complex matrices were fabricated by direct encapsulating either ground plant particles or an ethanolic crude extract of the Australian toxic pasture plant Pimelea trichostachya in the biodegradable polymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Proton nuclear magnetic resonance spectroscopy was initially employed to examine the chemical compositions of these complicated systems. Then, a more sensitive strategy was developed and validated by combining solid-phase extraction and ultrahigh-performance liquid chromatography hyphenated with a quadrupole Orbitrap mass spectrometer for the quantification of simplexin embedded in different biocomposites. Satisfactory linearity (R2 > 0.99) and recovery ranges (86.8-116%) with precision (relative standard deviations) of between 0.2 and 13% (n = 3) were achieved from seven biocomposites. The established protocol was further shown to be accurate and reliable in confirming the homogeneous distribution of the simplexin in different biocomposite formulations. A limited mass transfer of simplexin (< 3.5%) from one of the biocomposites into a simulated but sterilized in vitro rumen environment after a 10-day incubation was also revealed by utilizing the method. This quantitative analysis of targeted natural product within plant material-integrated polymeric platforms has potential application when controlled release is required in the bovine rumen and other biological systems. Graphical abstract.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas/métodos , Terpenos/química , Thymelaeaceae/química , Extractos Vegetales/química , Sensibilidad y Especificidad
16.
Toxins (Basel) ; 13(3)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33803254

RESUMEN

Photosensitization is a novel environmentally friendly technology with promising applications in the food industry to extend food shelf life. In this study, the natural food dye curcumin, when combined with visible light (430 nm), was shown to be an effective photosensitizer against the common phytopathogenic fungi Botrytis cinerea (the cause of grey mould). Production of the associated phytotoxic metabolites botrydial and dihydrobotrydial was measured by our newly developed and validated HRAM UPLC-MS/MS method, and was also shown to be reduced by this treatment. With a light dose of 120 J/cm2, the reduction in spore viability was directly proportional to curcumin concentrations, and the overall concentration of both botrydial and dihydrobotrydial also decreased with increasing curcumin concentration above 200 µM. With curcumin concentrations above 600 µM, the percentage reduction in fungal spores was close to 100%. When the dye concentration was increased to 800 µM, the spores were completely inactive and neither botrydial nor dihydrobotrydial could be detected. These results suggest that curcumin-mediated photosensitization is a potentially effective method to control B. cinerea spoilage, and also to reduce the formation of these phytotoxic botryane secondary metabolites.


Asunto(s)
Botrytis/efectos de los fármacos , Curcumina/farmacología , Fragaria/microbiología , Frutas/microbiología , Fungicidas Industriales/farmacología , Fármacos Fotosensibilizantes/farmacología , Esporas Fúngicas/efectos de los fármacos , Aldehídos/metabolismo , Aldehídos/toxicidad , Botrytis/crecimiento & desarrollo , Botrytis/metabolismo , Compuestos Bicíclicos con Puentes/metabolismo , Compuestos Bicíclicos con Puentes/toxicidad , Cromatografía Liquida , Microbiología de Alimentos , Conservación de Alimentos , Metabolismo Secundario , Espectrometría de Masa por Ionización de Electrospray , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/metabolismo , Espectrometría de Masas en Tándem
17.
Foods ; 10(2)2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33494323

RESUMEN

A study was conducted using maize samples collected from different agroecological zones of Kenya (n = 471) and Tanzania (n = 100) during the 2013 maize harvest season to estimate a relationship between aflatoxin B1 concentration and occurrence with weather conditions during the growing season. The toxins were analysed by the ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method. Aflatoxin B1 incidence ranged between 0-100% of samples in different regions with an average value of 29.4% and aflatoxin concentrations of up to 6075 µg/kg recorded in one sample. Several regression techniques were explored. Random forests achieved the highest overall accuracy of 80%, while the accuracy of a logistic regression model was 65%. Low rainfall occurring during the early stage of the maize plant maturing combined with high temperatures leading up to full maturity provide warning signs of aflatoxin contamination. Risk maps for the two countries for the 2013 season were generated using both random forests and logistic regression models.

18.
Cell Biol Int ; 45(3): 518-527, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32068315

RESUMEN

Arginine-deprivation therapy is a rapidly developing metabolic anticancer approach. To overcome the resistance of some cancer cells to this monotherapy, rationally designed combination modalities are needed. In this report, we evaluated for the first time indospicine, an arginine analogue of Indigofera plant genus origin, as potential enhancer compound for the metabolic therapy that utilizes recombinant human arginase I. We demonstrate that indospicine at low micromolar concentrations is selectively toxic for human colorectal cancer cells only in the absence of arginine. In arginine-deprived cancer cells indospicine deregulates some prosurvival pathways (PI3K-Akt and MAPK) and activates mammalian target of rapamycin, exacerbates endoplasmic reticulum stress and triggers caspase-dependent apoptosis, which is reversed by the exposure to translation inhibitors. Simultaneously, indospicine is not degraded by recombinant human arginase I and does not inhibit this arginine-degrading enzyme at its effective dose. The obtained results emphasize the potential of arginine structural analogues as efficient components for combinatorial metabolic targeting of malignant cells.


Asunto(s)
Apoptosis/efectos de los fármacos , Arginina/deficiencia , Neoplasias/patología , Norleucina/análogos & derivados , Arginasa/metabolismo , Arginina/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Norleucina/química , Norleucina/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Especificidad por Sustrato/efectos de los fármacos
19.
Toxins (Basel) ; 12(10)2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33092236

RESUMEN

Animal feeds may contain exogenous compounds that can induce toxicity when ruminants ingest them. These toxins are secondary metabolites originating from various sources including plants, bacteria, algae and fungi. Animal feed toxins are responsible for various animal poisonings which negatively impact the livestock industry. Poisoning is more frequently reported in newly exposed, naïve ruminants while 'experienced' ruminants are observed to better tolerate toxin-contaminated feed. Ruminants can possess detoxification ability through rumen microorganisms with the rumen microbiome able to adapt to utilise toxic secondary metabolites. The ability of rumen microorganisms to metabolise these toxins has been used as a basis for the development of preventative probiotics to confer resistance against the poisoning to naïve ruminants. In this review, detoxification of various toxins, which include plant toxins, cyanobacteria toxins and plant-associated fungal mycotoxins, by rumen microorganisms is discussed. The review will include clinical studies of the animal poisoning caused by these toxins, the toxin mechanism of action, toxin degradation by rumen microorganisms, reported and hypothesised detoxification mechanisms and identified toxin metabolites with their toxicity compared to their parent toxin. This review highlights the commercial potential of rumen inoculum derived probiotics as viable means of improving ruminant health and production.


Asunto(s)
Alimentación Animal/microbiología , Bacterias/metabolismo , Toxinas Bacterianas/metabolismo , Micotoxinas/metabolismo , Intoxicación por Plantas/veterinaria , Plantas Tóxicas/metabolismo , Rumen/microbiología , Rumiantes/microbiología , Animales , Toxinas Bacterianas/toxicidad , Microbiología de Alimentos , Inactivación Metabólica , Micotoxinas/toxicidad , Intoxicación por Plantas/metabolismo , Intoxicación por Plantas/prevención & control , Plantas Tóxicas/toxicidad , Probióticos/farmacología , Rumen/metabolismo , Rumiantes/metabolismo
20.
Artículo en Inglés | MEDLINE | ID: mdl-32872537

RESUMEN

Honey is an extensively utilized sweetener containing sugars and water, together with small quantities of vitamins, minerals, fatty acids, amino acids and proteins. Naturally produced by honeybees (Apis mellifera) from floral nectar, honey is increasingly sold as a health food product due to its nutritious features. Certain honeys are retailed as premium, trendy products. Honeybees are regarded as environmental monitors, but few reports examine the impact of environment on Australian honey trace elements and minerals. In higher density urban and industrial environments, heavy metals can be common, while minerals and trace elements can have ubiquitous presence in both agricultural and urban areas. Honey hives are traditionally placed in rural and forested areas, but increasingly the trend is to keep hives in more urban areas. This study aimed to determine the levels of 26 minerals and trace elements and assess elemental differences between honeys from various regional Queensland and Australian sources. Honey samples (n = 212) were acquired from markets, shops and supermarkets in Queensland while urban honeys were purchased online. The honey samples were classified into four groups according to their regional sources: urban, rural, peri-urban and blend honey. Elemental analyses of honey were performed using ICP-MS and ICP-OES after microwave and hot block digestion. Considerable variations of essential trace elements (Co, Cu, Cr, Fe, Mn, Mo and Zn) and mineral levels (Ca, K, Mg, Na and P) were found in honeys surveyed. There were significant differences (p < 0.05) between urban and rural honey samples for B, Na, P, Mn, K, Ca and Cu. Significant differences (p < 0.05) were also found between blend and urban honey samples for K, Cu, P, Mn, Sr, Ni, B and Na. Peri-urban versus urban honeys showed significant differences in P, K and Mn. For rural and peri-urban honeys, the only significant difference (p < 0.05) was for Na. Toxic heavy metals were detected at relatively low levels in honey products. The study revealed that the Queensland/Australian honey studied is a good source of K and Zn and would constitute a good nutritional source of these elements.


Asunto(s)
Miel , Oligoelementos , Animales , Australia , Abejas , Miel/análisis , Minerales/análisis , Queensland , Oligoelementos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...