Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38731585

RESUMEN

The techniques used to detect and quantify cyanocobalamin (vitamin B12) vary considerably in terms of detection sensitivity, from the most sensitive, based on radioisotopes and mass spectrometry (MS) with limits of detection (LOD) in fg mL-1, to fluorescence (FL) and surface plasmon resonance (SPR) biosensors with LOD values in the range of a few µg mL-1. For accurate quantification of an analyte present at trace levels in complex biological matrices, a selective separation and enrichment step is required to overcome matrix interferences and ensure sufficient detection sensitivity. In this study, iron oxide magnetic nanoparticles (IONPs) were used for the extraction and initial preconcentration of cyanocobalamin (vitamin B12). In the dependence of the magnetization on the H-field (hysteresis loop), no coercivity and remanence values were found at 300 K, indicating the superparamagnetic properties of the tested IONPs. Perfluorinated acids were used as amphiphilic agents to allow the sorption of cyanocobalamin onto the IONPs. FT-IR/ATR spectroscopy was used to confirm the sorption of cyanocobalamin on the IONPs. The influence of the addition of a homologous series of perfluorinated acids such as trifluoroacetic acid (TFAA), heptafluorobutyric acid (HFBA), and trichloroacetic acid (TCAA) to the extraction mixture was tested considering their type, mass, and time required for effective sorption. The adsorption kinetics and isotherm, described by the Freundlich and Langmuir equations, were analyzed. The maximum adsorption capacity (qm) exceeded 6 mg g-1 and was 8.9 mg g-1 and 7.7 mg g-1 for HFBA and TCAA, respectively, as the most efficient additives. After the desorption process using aqueous KH2PO4 solution, the sample was finally analyzed spectrophotometrically and chromatographically. The IONP-based method was successfully applied for the isolation of cyanocobalamin from human urine samples. The results showed that the developed approach is simple, cheap, accurate, and efficient for the determination of traces of cyanocobalamin in biological matrices.


Asunto(s)
Nanopartículas Magnéticas de Óxido de Hierro , Vitamina B 12 , Vitamina B 12/química , Vitamina B 12/análisis , Adsorción , Nanopartículas Magnéticas de Óxido de Hierro/química , Límite de Detección , Porosidad , Espectroscopía Infrarroja por Transformada de Fourier
2.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732128

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a condition in which the pathological cumulation of fat with coexisting inflammation and damage of hepatic cells leads to progressive dysfunctions of the liver. Except for the commonly well-known major causes of NAFLD such as obesity, dyslipidemia, insulin resistance, or diabetes, an unbalanced diet and imbalanced nutritional status should also be taken into consideration. In this narrative review, we summarized the current knowledge regarding the micro- and macronutrient status of patients suffering from NAFLD considering various diets and supplementation of chosen supplements. We aimed to summarize the knowledge indicating which nutritional impairments may be associated with the onset and progression of NAFLD at the same time evaluating the potential therapy targets that could facilitate the healing process. Except for the above-mentioned objectives, one of the most important aspects of this review was to highlight the possible strategies for taking care of NAFLD patients taking into account the challenges and opportunities associated with the micronutrient status of the patients. The current research indicates that a supplementation of chosen vitamins (e.g., vitamin A, B complex, C, or D) as well as chosen elements such as zinc may alleviate the symptoms of NAFLD. However, there is still a lack of sufficient data regarding healthy ranges of dosages; thus, further research is of high importance in this matter.


Asunto(s)
Suplementos Dietéticos , Micronutrientes , Enfermedad del Hígado Graso no Alcohólico , Nutrientes , Estado Nutricional , Humanos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/dietoterapia , Nutrientes/metabolismo , Micronutrientes/metabolismo , Vitaminas/metabolismo , Vitaminas/administración & dosificación
3.
J Clin Med ; 13(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38673657

RESUMEN

Changes in trace element concentrations are being wildly considered when it comes to neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease. This study aims to present the role that trace elements play in the central nervous system. Moreover, we reviewed the mechanisms involved in their neurotoxicity. Low zinc concentrations, as well as high levels of copper, manganese, and iron, activate the signalling pathways of the inflammatory, oxidative and nitrosative stress response. Neurodegeneration occurs due to the association between metals and proteins, which is then followed by aggregate formation, mitochondrial disorder, and, ultimately, cell death. In Alzheimer's disease, low Zn levels suppress the neurotoxicity induced by ß-amyloid through the selective precipitation of aggregation intermediates. High concentrations of copper, iron and manganese cause the aggregation of intracellular α-synuclein, which results in synaptic dysfunction and axonal transport disruption. Parkinson's disease is caused by the accumulation of Fe in the midbrain dopaminergic nucleus, and the pathogenesis of multiple sclerosis derives from Zn deficiency, leading to an imbalance between T cell functions. Aluminium disturbs the homeostasis of other metals through a rise in the production of oxygen reactive forms, which then leads to cellular death. Selenium, in association with iron, plays a distinct role in the process of ferroptosis. Outlining the influence that metals have on oxidoreduction processes is crucial to recognising the pathophysiology of neurodegenerative diseases and may provide possible new methods for both their avoidance and therapy.

4.
Int J Mol Sci ; 25(6)2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38542125

RESUMEN

In recent years, there has been a growing interest in plant pigments as readily available nutraceuticals. Photosynthetic pigments, specifically chlorophylls and carotenoids, renowned for their non-toxic antioxidant properties, are increasingly finding applications beyond their health-promoting attributes. Consequently, there is an ongoing need for cost-effective methods of isolation. This study employs a co-precipitation method to synthesize magnetic iron oxide nanoparticles. Scanning electron microscopy (SEM) coupled with energy dispersive spectrometry (EDS) confirms that an aqueous environment and oxidizing conditions yield nanosized iron oxide with particle sizes ranging from 80 to 140 nm. X-ray photoelectron spectroscopy (XPS) spectra indicate the presence of hydrous iron oxide FeO(OH) on the surface of the nanosized iron oxide. The Brunauer-Emmett-Teller (BET) surface area of obtained nanomaterial was 151.4 m2 g-1, with total pore volumes of pores 0.25 cm3 g-1 STP. The material, designated as iron oxide nanoparticles (IONPs), serves as an adsorbent for magnetic solid phase extraction (MSPE) and isolation of photosynthetic pigments (chlorophyll a, lutein) from extracts of higher green plants (Mentha piperita L., Urtica dioica L.). Sorption of chlorophyll a onto the nanoparticles is confirmed using UV-vis spectroscopy, Fourier transform infrared photoacoustic spectroscopy (FT-IR/PAS), and high-performance liquid chromatography (HPLC). Selective sorption of chlorophyll a requires a minimum of 3 g of IONPs per 12 mg of chlorophyll a, with acetone as the solvent, and is dependent on a storage time of 48 h. Extended contact time of IONPs with the acetone extract, i.e., 72 h, ensures the elimination of remaining components except lutein, with a spectral purity of 98%, recovered with over 90% efficiency. The mechanism of chlorophyll removal using IONPs relies on the interaction of the pigment's carbonyl (C=O) groups with the adsorbent surface hydroxyl (-OH) groups. Based on molecular dynamics (MD) simulations, it has been proven that the selective adsorption of pigments is also influenced by more favorable dispersion interactions between acetone and chlorophyll in comparison with other solutes. An aqueous environment significantly promotes the removal of pigments; however, it results in a complete loss of selectivity.


Asunto(s)
Compuestos Férricos , Luteína , Extractos Vegetales , Extractos Vegetales/química , Clorofila A , Clorofila , Espectroscopía Infrarroja por Transformada de Fourier , Acetona , Agua , Adsorción , Extracción en Fase Sólida/métodos , Nanopartículas Magnéticas de Óxido de Hierro , Fenómenos Magnéticos
5.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38338710

RESUMEN

Sunlight, despite its benefits, can pose a threat to the skin, which is a natural protective barrier. Phototoxicity caused by overexposure, especially to ultraviolet radiation (UVR), results in burns, accelerates photoaging, and causes skin cancer formation. Natural substances of plant origin, i.e., polyphenols, flavonoids, and photosynthetic pigments, can protect the skin against the effects of radiation, acting not only as photoprotectors like natural filters but as antioxidant and anti-inflammatory remedies, alleviating the effects of photodamage to the skin. Plant-based formulations are gaining popularity as an attractive alternative to synthetic filters. Over the past 20 years, a large number of studies have been published to assess the photoprotective effects of natural plant products, primarily through their antioxidant, antimutagenic, and anti-immunosuppressive activities. This review selects the most important data on skin photodamage and photoprotective efficacy of selected plant carotenoid representatives from in vivo studies on animal models and humans, as well as in vitro experiments performed on fibroblast and keratinocyte cell lines. Recent research on carotenoids associated with lipid nanoparticles, nanoemulsions, liposomes, and micelles is reviewed. The focus was on collecting those nanomaterials that serve to improve the bioavailability and stability of carotenoids as natural antioxidants with photoprotective activity.


Asunto(s)
Neoplasias Cutáneas , Rayos Ultravioleta , Animales , Humanos , Rayos Ultravioleta/efectos adversos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Piel/metabolismo , Queratinocitos , Carotenoides/farmacología , Carotenoides/metabolismo , Neoplasias Cutáneas/metabolismo , Protectores Solares/farmacología
6.
Antibiotics (Basel) ; 13(2)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38391497

RESUMEN

Iron oxide nanoparticles (IONPs) have many practical applications, ranging from environmental protection to biomedicine. IONPs are being investigated due to their high potential for antimicrobial activity and lack of toxicity to humans. However, the biological activity of IONPs is not uniform and depends on the synthesis conditions, which affect the shape, size and surface modification. The aim of this work is to synthesise IONPs using a mixed method, i.e., chemical co-precipitation combined with biogenic surface modification, using extracts from spent hops (Humulus lupulus L.) obtained as waste product from supercritical carbon dioxide hop extraction. Different extracts (water, dimethyl sulfoxide (DMSO), 80% ethanol, acetone, water) were further evaluated for antioxidant activity based on the silver nanoparticle antioxidant capacity (SNPAC), total phenolic content (TPC) and total flavonoid content (TFC). The IONPs were characterised via UV-vis spectroscopy, scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS) and Fourier-transform infrared (FT-IR) spectroscopy. Spent hop extracts showed a high number of flavonoid compounds. The efficiency of the solvents used for the extraction can be classified as follows: DMSO > 80% ethanol > acetone > water. FT-IR/ATR spectra revealed the involvement of flavonoids such as xanthohumol and/or isoxanthohumol, bitter acids (i.e., humulones, lupulones) and proteins in the surface modification of the IONPs. SEM images showed a granular, spherical structure of the IONPs with diameters ranging from 81.16 to 142.5 nm. Surface modification with extracts generally weakened the activity of the IONPs against the tested Gram-positive and Gram-negative bacteria and yeasts by half. Only the modification of IONPs with DMSO extract improved their antibacterial properties against Gram-positive bacteria (Staphylococcus epidermidis, Staphylococcus aureus, Micrococcus luteus, Enterococcus faecalis, Bacillus cereus) from a MIC value of 2.5-10 mg/mL to 0.313-1.25 mg/mL.

7.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38003548

RESUMEN

According to the World Health Organization (WHO), around 11 million people suffer from burns every year, and 180,000 die from them. A burn is a condition in which heat, chemical substances, an electrical current or other factors cause tissue damage. Burns mainly affect the skin, but can also affect deeper tissues such as bones or muscles. When burned, the skin loses its main functions, such as protection from the external environment, pathogens, evaporation and heat loss. Depending on the stage of the burn, the patient's condition and the cause of the burn, we need to choose the most appropriate treatment. Personalization and multidisciplinary collaboration are key to the successful management of burn patients. In this comprehensive review, we have collected and discussed the available treatment options, focusing on recent advances in topical treatments, wound cleansing, dressings, skin grafting, nutrition, pain and scar tissue management.


Asunto(s)
Quemaduras , Cicatrización de Heridas , Humanos , Piel , Trasplante de Piel , Vendajes , Quemaduras/cirugía
8.
Int J Mol Sci ; 24(19)2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37834407

RESUMEN

Manganese (Mn) is an essential trace element with unique functions in the body; it acts as a cofactor for many enzymes involved in energy metabolism, the endogenous antioxidant enzyme systems, neurotransmitter production, and the regulation of reproductive hormones. However, overexposure to Mn is toxic, particularly to the central nervous system (CNS) due to it causing the progressive destruction of nerve cells. Exposure to manganese is widespread and occurs by inhalation, ingestion, or dermal contact. Associations have been observed between Mn accumulation and neurodegenerative diseases such as manganism, Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. People with genetic diseases associated with a mutation in the gene associated with impaired Mn excretion, kidney disease, iron deficiency, or a vegetarian diet are at particular risk of excessive exposure to Mn. This review has collected data on the current knowledge of the source of Mn exposure, the experimental data supporting the dispersive accumulation of Mn in the brain, the controversies surrounding the reference values of biomarkers related to Mn status in different matrices, and the competitiveness of Mn with other metals, such as iron (Fe), magnesium (Mg), zinc (Zn), copper (Cu), lead (Pb), calcium (Ca). The disturbed homeostasis of Mn in the body has been connected with susceptibility to neurodegenerative diseases, fertility, and infectious diseases. The current evidence on the involvement of Mn in metabolic diseases, such as type 2 diabetes mellitus/insulin resistance, osteoporosis, obesity, atherosclerosis, and non-alcoholic fatty liver disease, was collected and discussed.


Asunto(s)
Diabetes Mellitus Tipo 2 , Intoxicación por Manganeso , Enfermedades Neurodegenerativas , Humanos , Manganeso/toxicidad , Manganeso/metabolismo , Intoxicación por Manganeso/metabolismo , Homeostasis
9.
Int J Mol Sci ; 24(20)2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37894749

RESUMEN

The multifactorial etiology of major depressive disorder (MDD) includes biological, environmental, genetic, and psychological aspects. Recently, there has been an increasing interest in metallomic studies in psychiatry, aiming to evaluate the role of chosen trace elements in the MDD etiology as well as the progression of symptoms. This narrative review aims to summarize the available literature on the relationship between the concentration of chosen elements in the serum of patients with MDD and the onset and progression of this psychiatric condition. The authors reviewed PubMed, Web of Science, and Scopus databases searching for elements that had been investigated so far and further evaluated them in this paper. Ultimately, 15 elements were evaluated, namely, zinc, magnesium, selenium, iron, copper, aluminium, cadmium, lead, mercury, arsenic, calcium, manganese, chromium, nickel, and phosphorus. The association between metallomic studies and psychiatry has been developing dynamically recently. According to the results of current research, metallomics might act as a potential screening tool for patients with MDD while at the same time providing an assessment of the severity of symptoms. Either deficiencies or excessive amounts of chosen elements might be associated with the progression of depressive symptoms or even the onset of the disease among people predisposed to MDD.


Asunto(s)
Trastorno Depresivo Mayor , Selenio , Oligoelementos , Humanos , Zinc , Cobre , Cromo , Cadmio
10.
J Clin Med ; 12(18)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37762739

RESUMEN

Glaucoma is a leading cause of irreversible blindness and is characterized by increased intraocular pressure (IOP) and progressive optic nerve damage. The current therapeutic approaches for glaucoma management, such as eye drops and oral medications, face challenges including poor bioavailability, low patient compliance, and limited efficacy. In recent years, nanotechnology has emerged as a promising approach to overcome these limitations and revolutionize glaucoma treatment. In this narrative review, we present an overview of the novel nanotechnologies employed in the treatment of primary open-angle glaucoma. Various nanosystems, including liposomes, niosomes, nanoparticles, and other nanostructured carriers, have been developed to enhance the delivery and bioavailability of antiglaucoma drugs. They offer advantages such as a high drug loading capacity, sustained release, improved corneal permeability, and targeted drug delivery to the ocular tissues. The application of nanotechnologies in glaucoma treatment represents a transformative approach that addresses the limitations of conventional therapies. However, further research is needed to optimize the formulations, evaluate long-term safety, and implement these nanotechnologies into clinical practice. With continued advancements in nanotechnology, the future holds great potential for improving the management and outcomes of glaucoma, ultimately preserving vision and improving the lives of millions affected by this debilitating disease.

11.
Nutrients ; 15(15)2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37571395

RESUMEN

Dyslipidaemia is a disorder of the lipid metabolism, caused mainly by poor eating habits. The most severe consequence of an inappropriate diet is the development of atherosclerosis and hepatic steatosis. It is generally believed that a change in nutrition, and increased physical activity can eliminate these health problems. The contemporary research and therapies used to treat dyslipidemia mainly focus on lowering the triglyceride and cholesterol levels. However, disturbances in trace element homeostasis or the accumulation of toxic elements can also affect physiological processes, and be involved in the development of metabolically mediated diseases. The present study aimed to determine the mineral profiles of liver and brain tissues collected at autopsy (n = 39) in groups of people with hepatic steatosis (n = 5), atherosclerosis (n = 9), hepatic steatosis, and atherosclerosis (n = 16), and others without the selected disorders (n = 9). Concentrations of 51 elements were analysed via inductively coupled plasma mass spectrometry (ICP-MS) after the initial wet mineralisation of the samples with nitric acid. The results obtained allow us to conclude that the hepatic steatosis group suffers from a deficiency of important trace elements, such as copper, zinc, and molybdenum (p < 0.05), whereas the group with atherosclerosis is characterised by elevated levels of cadmium in the liver tissue (p = 0.01). Analysing the mean values of the element concentrations measured in 11 brain areas, statistically significant higher levels of calcium and copper (p < 0.001) were found in the atherosclerosis group, compared to the hepatic steatosis group, confirming the involvement of these elements in the pathogenesis of atherosclerosis. In addition, an accumulation of cadmium, lead, titanium, and strontium in the brain tissue was observed in the atherosclerosis group. While the accumulation of individual elements differs in different parts of the brain, the differences in the cadmium content (p < 0.05) between the study groups apply to the whole brain, except for the nucleus accumbens septi area, where a statistically significant titanium accumulation occurs in the atherosclerosis and steatosis groups, compared to the others (p < 0.05). In addition, the disruption of elemental homeostasis in the brain of a single case with bipolar disorder, and a case with hip replacement was observed. Our results confirm the involvement of chemical elements in the pathogenesis of selected metabolic diseases, and the need for further studies in larger populations.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Oligoelementos , Humanos , Cobre/metabolismo , Micronutrientes , Cadmio/metabolismo , Autopsia , Titanio , Xenobióticos , Oligoelementos/metabolismo
12.
Molecules ; 28(14)2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37513392

RESUMEN

Phytogenically synthesised nanoparticle (NP)-based drug delivery systems have promising potential in the field of biopharmaceuticals. From the point of view of biomedical applications, such systems offer the small size, high surface area, and possible synergistic effects of NPs with embedded biomolecules. This article describes the synthesis of silver nanoparticles (Ag-NPs) using extracts from the flowers and leaves of tansy (Tanacetum vulgare L.), which is known as a remedy for many health problems, including cancer. The reducing power of the extracts was confirmed by total phenolic and flavonoid content and antioxidant tests. The Ag-NPs were characterised by various analytical techniques including UV-vis spectroscopy, scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS), Fourier transform infrared (FT-IR) spectroscopy, and a dynamic light scattering (DLS) system. The obtained Ag-NPs showed higher cytotoxic activity than the initial extracts against both human cervical cancer cell lines HeLa (ATCC CCL-2) and human melanoma cell lines A375 and SK-MEL-3 by MTT assay. However, the high toxicity to Vero cell culture (ATCC CCL-81) and human fibroblast cell line WS-1 rules out the possibility of their use as anticancer agents. The plant-mediated Ag-NPs were mostly bactericidal against tested strains with MBC/MIC index ≤4. Antifungal bioactivity (C. albicans, C. glabrata, and C. parapsilosis) was not observed for aqueous extracts (MIC > 8000 mg L-1), but Ag-NPs synthesised using both the flowers and leaves of tansy were very potent against Candida spp., with MIC 15.6 and 7.8 µg mL-1, respectively.


Asunto(s)
Antiinfecciosos , Antineoplásicos , Nanopartículas del Metal , Humanos , Plata/farmacología , Plata/química , Espectroscopía Infrarroja por Transformada de Fourier , Nanopartículas del Metal/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Antineoplásicos/farmacología , Pruebas de Sensibilidad Microbiana
13.
Nutrients ; 15(12)2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37375704

RESUMEN

The anthropogenic environment and diet introduce many metals into the human body, both essential and toxic. Absorption leads to systemic exposure and accumulation in body fluids and tissues. Both excess and deficiency of trace elements are health hazards. The primary aim of the present study was to evaluate the concentration of 51 elements in liver samples and 11 selected brain regions obtained at post-mortem examination from a population of adults living in south-eastern Poland (n = 15). A total of 180 analyses were performed by inductively coupled plasma mass spectrometry in two independent replicates. The collected data show very high individual variability in the content of the investigated elements. Macroelements such as sodium, magnesium, phosphorus, potassium, calcium, iron, and zinc occurred in the highest concentrations and with the greatest statistically significant variations. Although the elemental content of the brain and liver differed significantly, the strongest positive correlation between liver and polus frontalis was observed for the essential element selenium (0.9338) and the strongest negative one for manganese (-0.4316) and lanthanum (-0.5110). The brain areas studied have different requirements for phosphorus, manganese, iron, and molybdenum. In addition, males had a significantly (p < 0.05) higher brain content of lanthanides and actinides than females. The results of this study show that the inhabitants of south-eastern Poland are exposed to a fairly uniform accumulation of aluminum and vanadium in the brain, which have the highest affinity to the thalamus dorsalis. This result proves that there is environmental exposure to these elements.


Asunto(s)
Selenio , Oligoelementos , Masculino , Adulto , Femenino , Humanos , Manganeso/análisis , Oligoelementos/análisis , Selenio/análisis , Hierro/análisis , Fósforo , Encéfalo , Hígado/química
14.
Int J Mol Sci ; 24(8)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37108392

RESUMEN

Aluminium (Al) is the most ubiquitous metal in the Earth's crust. Even though its toxicity is well-documented, the role of Al in the pathogenesis of several neurological diseases remains debatable. To establish the basic framework for future studies, we review literature reports on Al toxicokinetics and its role in Alzheimer's disease (AD), autism spectrum disorder (ASD), alcohol use disorder (AUD), multiple sclerosis (MS), Parkinson's disease (PD), and dialysis encephalopathy (DE) from 1976 to 2022. Despite poor absorption via mucosa, the biggest amount of Al comes with food, drinking water, and inhalation. Vaccines introduce negligible amounts of Al, while the data on skin absorption (which might be linked with carcinogenesis) is limited and requires further investigation. In the above-mentioned diseases, the literature shows excessive Al accumulation in the central nervous system (AD, AUD, MS, PD, DE) and epidemiological links between greater Al exposition and their increased prevalence (AD, PD, DE). Moreover, the literature suggests that Al has the potential as a marker of disease (AD, PD) and beneficial results of Al chelator use (such as cognitive improvement in AD, AUD, MS, and DE cases).


Asunto(s)
Enfermedad de Alzheimer , Trastorno del Espectro Autista , Esclerosis Múltiple , Enfermedad de Parkinson , Humanos , Aluminio/toxicidad , Trastorno del Espectro Autista/patología , Encéfalo/patología , Enfermedad de Alzheimer/patología , Sistema Nervioso Central/patología , Enfermedad de Parkinson/patología , Esclerosis Múltiple/patología
15.
Int J Mol Sci ; 23(24)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36555619

RESUMEN

Nanomaterials (NM) arouse interest in various fields of science and industry due to their composition-tunable properties and the ease of modification. They appear currently as components of many consumer products such as sunscreen, dressings, sports clothes, surface-cleaning agents, computer devices, paints, as well as pharmaceutical and cosmetics formulations. The use of NPs in products for topical applications improves the permeation/penetration of the bioactive compounds into deeper layers of the skin, providing a depot effect with sustained drug release and specific cellular and subcellular targeting. Nanocarriers provide advances in dermatology and systemic treatments. Examples are a non-invasive method of vaccination, advanced diagnostic techniques, and transdermal drug delivery. The mechanism of action of NPs, efficiency of skin penetration, and potential threat to human health are still open and not fully explained. This review gives a brief outline of the latest nanotechnology achievements in products used in topical applications to prevent and treat skin diseases. We highlighted aspects such as the penetration of NPs through the skin (influence of physical-chemical properties of NPs, the experimental models for skin penetration, methods applied to improve the penetration of NPs through the skin, and methods applied to investigate the skin penetration by NPs). The review summarizes various therapies using NPs to diagnose and treat skin diseases (melanoma, acne, alopecia, vitiligo, psoriasis) and anti-aging and UV-protectant nano-cosmetics.


Asunto(s)
Cosméticos , Nanopartículas , Enfermedades de la Piel , Humanos , Piel , Enfermedades de la Piel/tratamiento farmacológico , Nanopartículas/química , Cosméticos/química , Administración Cutánea , Sistemas de Liberación de Medicamentos , Preparaciones Farmacéuticas
16.
Toxics ; 10(11)2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36422915

RESUMEN

Postmortem carbon monoxide (CO) and hydrogen cyanide (HCN) diffusion under ambient conditions was assessed in a human cadaver model. The main objective of this study was to determine whether the postmortem diffusion of HCN and CO greatly affected the determination of HCN, carboxyhemoglobin (COHb), and carboxymyoglobin (COMb). Layered samples of blood, musculocutaneous, and muscular specimens were collected from the adult cadavers and placed in the tight chambers designed for the purpose of this experiment. The specimens were treated with CO and HCN for 24 h. COHb and COMb were determined using headspace gas chromatography (GC) with an O-FID detector while the HCN values were assessed using a GC headspace with an NPD detector. It was shown that the skin substantially limited the diffusion of CO which penetrated the superficial layers of the muscle very slightly, all the while not affecting the blood level of COHb in the 4.5 cm layer of the muscle located underneath. There were no differences regarding the CO diffusion between superficially charred and thermally coagulated compared to that observed in intact integuments. In addition, the cutaneous sample deprived of the adipose layer was not shown to be a barrier to the moderate diffusion of CO into the blood layer below. HCN was found to easily diffuse from the skin to the blood vessels (vein specimens), and partial charring and thermocoagulation of the superficial muscular layer favored the diffusion of cyanides into the tissues. Similarly to CO, HCN diffusion to the blood and muscles was greatly limited by the adipose layer.

17.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36430168

RESUMEN

In this study, ionic liquids were used for the selective extraction/isolation of hemoglobin from human serum for cotinine determination using the ELISA Kit. The suitability of hydrophobic imidazolium-based ionic liquids was tested, of which OMIM BF4 (1-methyl-3-octylimidazolium tetrafluoroborate) turned out to be the most suitable for direct extraction of hemoglobin into an ionic liquid without the use of any additional reagent at one extraction step. Hemoglobin was separated quantitatively (95% recovery) from the remaining types of proteins remaining in the aqueous phase. Quantum mechanical calculations showed that the interaction of the iron atom in the heme group and the nitrogen atom of the ionic liquid cation is responsible for the transfer of hemoglobin whereas molecular dynamics simulations demonstrated that the non-covalent interactions between heme and solvent are more favorable in the case of OMIM BF4 in comparison to water. The opposite trend was found for cotinine. Selective isolation of the heme/hemoglobin improved the ELISA test's accuracy, depending on the cotinine level, from 15% to 30%.


Asunto(s)
Hemo , Líquidos Iónicos , Humanos , Cotinina , Hemoglobinas , Ensayo de Inmunoadsorción Enzimática , Agua
18.
J Clin Med ; 11(21)2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36362630

RESUMEN

Human exposure to BPs is inevitable mostly due to contaminated food. In this preliminary study, for the first time, the presence of bisphenols (BPs) in aqueous humor (AH) collected from 44 patients undergoing cataract surgery was investigated. The measurements were performed using a sensitive ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC−MS/MS). Chromatographic separation was achieved using a reverse-phase column and a gradient elution mode. Multiple reaction monitoring (MRM) was used. The method was validated for bisphenol A (BPA) and bisphenol F (BPF). The limits of quantification (LOQs) of both investigated analytes were 0.25 ng mL−1. The method was linear in the range of 0.25−20.0 ng mL−1 with correlation coefficients (R2) higher than 0.98. Recovery of analytes was in the range of 99.9 to 104.3% and intra-assay and inter-assay precision expressed by relative standard deviations (RSD%) were less than 5%. BPA was detected in 12 AH samples with mean concentrations of 1.41 ng mL−1. BPF was not detected at all. Furthermore, two structural isomers termed BPA-1, and BPA-2 were identified, for the first time, in 40.9% of the AH samples, with almost twice higher mean concentrations of 2.15 ng mL−1, and 2.25 ng mL−1, respectively. The total content of BPs were higher in patients with coexisting ocular pathologies such as glaucoma, age-related macular degeneration (AMD), and diabetes in comparison to cataracts alone. However, the difference between these groups did not reach statistical significance (p > 0.05). Performed investigations indicate the need for further research on a larger population with the aim of knowing the consequences of BPs' accumulation in AH for visual function.

19.
Cancers (Basel) ; 14(19)2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36230560

RESUMEN

Micro- and nanoplatics have been already reported to be potential carcinogenic/mutagenic substances that might cause DNA damage, leading to carcinogenesis. Thus, the effects of micro- and nanoplastics exposure on human health are currently being investigated extensively to establish clear relationships between those substances and health consequences. So far, it has been observed that there exists a definite correlation between exposure to micro- and nanoplastic particles and the onset of several cancers. Therefore, we have conducted research using PubMed, Web of Science, and Scopus databases, searching for all the research papers devoted to cancers that could be potentially related to the subject of exposure to nano- and microplastics. Ultimately, in this paper, we have discussed several cancers, including hepatocellular carcinoma, pancreatic cancer, pancreatic ductal adenocarcinoma, biliary tract cancer, and some endocrine-related cancers.

20.
Artículo en Inglés | MEDLINE | ID: mdl-36078782

RESUMEN

Numerous factors affect reproduction, including stress, diet, obesity, the use of stimulants, or exposure to toxins, along with heavy elements (lead, silver, cadmium, uranium, vanadium, mercury, arsenic). Metals, like other xenotoxins, can cause infertility through, e.g., impairment of endocrine function and gametogenesis or excess production of reactive oxygen species (ROS). The advancement of nanotechnology has created another hazard to human safety through exposure to metals in the form of nanomaterials (NMs). Nanoparticles (NPs) exhibit a specific ability to penetrate cell membranes and biological barriers in the human body. These ultra-fine particles (<100 nm) can enter the human body through the respiratory tract, food, skin, injection, or implantation. Once absorbed, NPs are transported to various organs through the blood or lymph. Absorbed NPs, thanks to ultrahigh reactivity compared to bulk materials in microscale size, disrupt the homeostasis of the body as a result of interaction with biological molecules such as DNA, lipids, and proteins; interfering with the functioning of cells, organs, and physiological systems; and leading to severe pathological dysfunctions. Over the past decades, much research has been performed on the reproductive effects of essential trace elements. The research hypothesis that disturbances in the metabolism of trace elements are one of the many causes of infertility has been unquestionably confirmed. This review examines the complex reproductive risks for men regarding the exposure to potentially harmless xenobiotics based on a series of 298 articles over the past 30 years. The research was conducted using PubMed, Web of Science, and Scopus databases searching for papers devoted to in vivo and in vitro studies related to the influence of essential elements (iron, selenium, manganese, cobalt, zinc, copper, and molybdenum) and widely used metallic NPs on male reproduction potential.


Asunto(s)
Infertilidad , Nanopartículas del Metal , Oligoelementos , Fertilidad , Humanos , Masculino , Manganeso , Nanopartículas del Metal/toxicidad , Vanadio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA