Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1294357, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38318185

RESUMEN

TRPM2 is a Ca2+ permeable, non-selective cation channel in the plasma membrane that is involved in the innate immune response regulating, for example, chemotaxis in neutrophils and cytokine secretion in monocytes and macrophages. The intracellular adenine nucleotides ADP-ribose (ADPR) and 2'-deoxy-ADPR (2dADPR) activate the channel, in combination with their co-agonist Ca2+. Interestingly, activation of human TRPM2 (hsTRPM2) by 2dADPR is much more effective than activation by ADPR. However, the underlying mechanism of the nucleotides' differential effect on the channel is not yet fully understood. In this study, we performed whole-cell patch clamp experiments with HEK293 cells heterologously expressing hsTRPM2. We show that 2dADPR has an approx. 4-fold higher Ca2+ sensitivity than ADPR (EC50 = 190 and 690 nM). This allows 2dADPR to activate the channel at lower and thus physiological intracellular Ca2+ concentrations. Kinetic analysis of our data reveals that activation by 2dADPR is faster than activation by ADPR. Mutation in a calmodulin binding N-terminal IQ-like motif in hsTRPM2 completely abrogated channel activation by both agonists. However, mutation of a single amino acid residue (W1355A) in the C-terminus of hsTRPM2, at a site of extensive inter-domain interaction, resulted in slower activation by 2dADPR and neutralized the difference in rate of activation between the two agonists. Taken together, we propose a mechanism by which 2dADPR induces higher hsTRPM2 currents than ADPR by means of faster channel activation. The finding that 2dADPR has a higher Ca2+ sensitivity than ADPR may indicate that 2dADPR rather than ADPR activates hsTRPM2 in physiological contexts such as the innate immune response.


Asunto(s)
Adenosina Difosfato Ribosa , Canales Catiónicos TRPM , Humanos , Adenosina Difosfato Ribosa/química , Adenosina Difosfato Ribosa/farmacología , Señalización del Calcio , Células HEK293 , Cinética , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo
2.
Int J Oncol ; 62(1)2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36382671

RESUMEN

Bitter taste receptors (T2Rs) are G protein­coupled receptors originally detected in the gustatory system. More recently, T2Rs have been shown to be expressed in extra­oral cells eliciting non­gustatory functions. Emerging evidence has suggested a potential role for T2R signaling in diverse pathophysiological conditions, including cancer. -The aim of the present study was to evaluate the expression of T2R14 in pancreatic ductal adenocarcinoma (PDAC) and to assess its involvement in the anticancer effects induced by apigenin, a natural ligand of T2R14. For this purpose, T2R14 expression was explored in PDAC tumor tissue and tumor­derived cell lines. Using the cell lines expressing the highest levels of T2R14, its effects on chemoresponsiveness and migration upon activation with apigenin were investigated in vitro. To the best of our knowledge, the present study was the first to confirm the expression of the T2R family member T2R14 in PDAC. Patients with relatively high levels of T2R14 expression exhibited significantly prolonged overall survival compared with that of patients with low T2R14 expression. Furthermore, novel functions for apigenin were revealed; notably, apigenin was shown to elicit cytotoxic, anti­migratory and chemosensitizing effects to 5­fluoruracil (5­FU) and to 5­FU, leucovorin, irinotecan and oxaliplatin in pancreatic cancer cells. In conclusion, the present study extended the evidence for the anticancer effects of apigenin and strongly indicated the functional relevance of T2R14 in PDAC, even though their respective underlying pathways appear to be independent of each other.


Asunto(s)
Apigenina , Gusto , Humanos , Gusto/fisiología , Apigenina/farmacología , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Fluorouracilo
3.
Cell Immunol ; 380: 104589, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36084401

RESUMEN

The pulp of human teeth contains a population of self-renewing stem cells that can regulate the functions of immune cells. When applied to patients, these cells can protect tissues from damage by excessive inflammation. We confirm that dental pulp cells effectively inhibit the proliferation and activation of cytotoxic T cells in vitro, and show that they carry high levels of CD73, a key enzyme in the conversion of pro-inflammatory extracellular ATP to immunosuppressive adenosine. Given their accessibility and abundance, as well as their potential for allogeneic administration, dental pulp cells provide a valuable source for immunomodulatory therapy.


Asunto(s)
Adenosina , Pulpa Dental , 5'-Nucleotidasa/metabolismo , Adenosina/metabolismo , Adenosina Trifosfato/metabolismo , Linfocitos T CD8-positivos/metabolismo , Proliferación Celular , Humanos
4.
Protein Sci ; 31(6): e4320, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35634784

RESUMEN

Transient receptor potential melastatin 2 (TRPM2) is a Ca2+ -permeable, nonselective cation channel involved in diverse physiological processes such as immune response, apoptosis, and body temperature sensing. TRPM2 is activated by ADP-ribose (ADPR) and 2'-deoxy-ADPR in a Ca2+ -dependent manner. While two distinct binding sites exist for ADPR that exert different functions dependent on the species, the involvement of either binding site regarding the superagonistic effect of 2'-deoxy-ADPR is not clear yet. Here, we report the crystal structure of the MHR1/2 domain of TRPM2 from zebrafish (Danio rerio), and show that both ligands bind to this domain and activate the channel. We identified a so far unrecognized Zn2+ -binding domain that was not resolved in previous cryo-EM structures and that is conserved in most TRPM channels. In combination with patch clamp experiments we comprehensively characterize the effect of the Zn2+ -binding domain on TRPM2 activation. Our results provide insight into a conserved motif essential for structural integrity and channel activity.


Asunto(s)
Canales Catiónicos TRPM , Adenosina Difosfato Ribosa/química , Adenosina Difosfato Ribosa/metabolismo , Animales , Calcio/metabolismo , Canales Catiónicos TRPM/química , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo , Pez Cebra/metabolismo , Zinc/metabolismo
5.
Int J Mol Sci ; 23(6)2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35328585

RESUMEN

cADPR is a second messenger that releases Ca2+ from intracellular stores via the ryanodine receptor. Over more than 15 years, it has been controversially discussed whether cADPR also contributes to the activation of the nucleotide-gated cation channel TRPM2. While some groups have observed activation of TRPM2 by cADPR alone or in synergy with ADPR, sometimes only at 37 °C, others have argued that this is due to the contamination of cADPR by ADPR. The identification of a novel nucleotide-binding site in the N-terminus of TRPM2 that binds ADPR in a horseshoe-like conformation resembling cADPR as well as the cADPR antagonist 8-Br-cADPR, and another report that demonstrates activation of TRPM2 by binding of cADPR to the NUDT9H domain raised the question again and led us to revisit the topic. Here we show that (i) the N-terminal MHR1/2 domain and the C-terminal NUDT9H domain are required for activation of human TRPM2 by ADPR and 2'-deoxy-ADPR (2dADPR), (ii) that pure cADPR does not activate TRPM2 under a variety of conditions that have previously been shown to result in channel activation, (iii) the cADPR antagonist 8-Br-cADPR also inhibits activation of TRPM2 by ADPR, and (iv) cADPR does not bind to the MHR1/2 domain of TRPM2 while ADPR does.


Asunto(s)
ADP-Ribosa Cíclica , Canales Catiónicos TRPM , Sitios de Unión , Calcio/metabolismo , Señalización del Calcio , ADP-Ribosa Cíclica/metabolismo , Humanos , Canales Catiónicos TRPM/metabolismo
6.
Nat Commun ; 12(1): 5911, 2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34625545

RESUMEN

Immune cells at sites of inflammation are continuously activated by local antigens and cytokines, and regulatory mechanisms must be enacted to control inflammation. The stepwise hydrolysis of extracellular ATP by ectonucleotidases CD39 and CD73 generates adenosine, a potent immune suppressor. Here we report that human effector CD8 T cells contribute to adenosine production by releasing CD73-containing extracellular vesicles upon activation. These extracellular vesicles have AMPase activity, and the resulting adenosine mediates immune suppression independently of regulatory T cells. In addition, we show that extracellular vesicles isolated from the synovial fluid of patients with juvenile idiopathic arthritis contribute to T cell suppression in a CD73-dependent manner. Our results suggest that the generation of adenosine upon T cell activation is an intrinsic mechanism of human effector T cells that complements regulatory T cell-mediated suppression in the inflamed tissue. Finally, our data underscore the role of immune cell-derived extracellular vesicles in the control of immune responses.


Asunto(s)
5'-Nucleotidasa/metabolismo , Adenosina/metabolismo , Linfocitos T CD8-positivos/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas Ligadas a GPI/metabolismo , Terapia de Inmunosupresión , 5'-Nucleotidasa/genética , Adenosina Trifosfato , Animales , Autoinmunidad , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Proliferación Celular , Vesículas Extracelulares/inmunología , Humanos , Inflamación , Activación de Linfocitos , Ratones , Linfocitos T , Linfocitos T Reguladores/inmunología
7.
Front Immunol ; 12: 703574, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34539634

RESUMEN

CD38 is the major NAD+-hydrolyzing ecto-enzyme in most mammals. As a type II transmembrane protein, CD38 is also a promising target for the immunotherapy of multiple myeloma (MM). Nanobodies are single immunoglobulin variable domains from heavy chain antibodies that naturally occur in camelids. Using phage display technology, we isolated 13 mouse CD38-specific nanobodies from immunized llamas and produced these as recombinant chimeric mouse IgG2a heavy chain antibodies (hcAbs). Sequence analysis assigned these hcAbs to five distinct families that bind to three non-overlapping epitopes of CD38. Members of families 4 and 5 inhibit the GDPR-cyclase activity of CD38. Members of families 2, 4 and 5 effectively induce complement-dependent cytotoxicity against CD38-expressing tumor cell lines, while all families effectively induce antibody dependent cellular cytotoxicity. Our hcAbs present unique tools to assess cytotoxicity mechanisms of CD38-specific hcAbs in vivo against tumor cells and potential off-target effects on normal cells expressing CD38 in syngeneic mouse tumor models, i.e. in a fully immunocompetent background.


Asunto(s)
ADP-Ribosil Ciclasa 1/inmunología , Anticuerpos Monoclonales de Origen Murino/inmunología , Anticuerpos Antineoplásicos/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos , Cadenas Pesadas de Inmunoglobulina/inmunología , Glicoproteínas de Membrana/inmunología , Neoplasias/inmunología , ADP-Ribosil Ciclasa 1/genética , Animales , Anticuerpos Monoclonales de Origen Murino/genética , Anticuerpos Antineoplásicos/genética , Línea Celular Tumoral , Humanos , Cadenas Pesadas de Inmunoglobulina/genética , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados
8.
FEBS J ; 288(23): 6769-6782, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34189846

RESUMEN

Nudix hydrolase 9 (NUDT9) is a member of the nucleoside linked to another moiety X (NUDIX) protein superfamily, which hydrolyses a broad spectrum of organic pyrophosphates from metabolic processes. ADP-ribose (ADPR) has been the only known endogenous substrate accepted by NUDT9 so far. The Ca2+ -permeable transient receptor potential melastatin subfamily 2 (TRPM2) channel contains a homologous NUDT9-homology (NUDT9H) domain and is activated by ADPR. Sustained Ca2+ influx via ADPR-activated TRPM2 triggers apoptotic mechanisms. Thus, a precise regulation of cellular ADPR levels by NUDT9 is essential. A detailed characterization of the enzyme-substrate interaction would help to understand the high substrate specificity of NUDT9. Here, we analysed ligand binding to NUDT9 using a variety of biophysical techniques. We identified 2'-deoxy-ADPR as an additional substrate for NUDT9. Similar enzyme kinetics and binding affinities were determined for the two ligands. The high-affinity binding was preserved in NUDT9 containing the mutated NUDIX box derived from the human NUDT9H domain. NMR spectroscopy indicated that ADPR and 2'-deoxy-ADPR bind to the same binding site of NUDT9. Backbone resonance assignment and subsequent molecular docking allowed further characterization of the binding pocket. Substantial conformational changes of NUDT9 upon ligand binding were observed which might allow for the development of NUDT9-based ADPR fluorescence resonance energy transfer sensors that may help with the analysis of ADPR signalling processes in cells in the future.


Asunto(s)
Adenosina Difosfato Ribosa/química , Simulación del Acoplamiento Molecular , Conformación Proteica , Pirofosfatasas/química , Adenosina Difosfato Ribosa/metabolismo , Sitios de Unión/genética , Unión Competitiva , Humanos , Cinética , Ligandos , Espectroscopía de Resonancia Magnética , Mutación , Unión Proteica , Pirofosfatasas/genética , Pirofosfatasas/metabolismo , Dispersión del Ángulo Pequeño , Especificidad por Sustrato , Difracción de Rayos X
9.
Sci Signal ; 14(675)2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33758062

RESUMEN

NAADP-evoked Ca2+ release through type 1 ryanodine receptors (RYR1) is a major mechanism underlying the earliest signals in T cell activation, which are the formation of Ca2+ microdomains. In our characterization of the molecular machinery underlying NAADP action, we identified an NAADP-binding protein, called hematological and neurological expressed 1-like protein (HN1L) [also known as Jupiter microtubule-associated homolog 2 (JPT2)]. Gene deletion of Hn1l/Jpt2 in human Jurkat and primary rat T cells resulted in decreased numbers of initial Ca2+ microdomains and delayed the onset and decreased the amplitude of global Ca2+ signaling. Photoaffinity labeling demonstrated direct binding of NAADP to recombinant HN1L/JPT2. T cell receptor/CD3-dependent coprecipitation of HN1L/JPT2 with RYRs and colocalization of these proteins suggest that HN1L/JPT2 connects NAADP formation with the activation of RYR channels within the first seconds of T cell activation. Thus, HN1L/JPT2 enables NAADP to activate Ca2+ release from the endoplasmic reticulum through RYR.


Asunto(s)
Calcio/metabolismo , Microdominios de Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , NADP/análogos & derivados , Animales , Complejo CD3/metabolismo , Señalización del Calcio , Retículo Endoplásmico/metabolismo , Humanos , Células Jurkat , Activación de Linfocitos , Proteínas Asociadas a Microtúbulos/genética , NADP/metabolismo , Unión Proteica , Ratas , Receptores de Antígenos de Linfocitos T/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Linfocitos T/metabolismo
10.
Front Immunol ; 11: 2018, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32903769

RESUMEN

TRPM2 is a non-selective, Ca2+-permeable cation channel widely expressed in immune cells. It is firmly established that the channel can be activated by intracellular adenosine 5'-diphosphoribose (ADPR). Until recent cryo-EM structures have exhibited an additional nucleotide binding site in the N-terminus of the channel, this activation was thought to occur via binding to a C-terminal domain of the channel that is highly homologous to the ADPR pyrophosphatase NudT9. Over the years it has been controversially discussed whether the Ca2+ mobilizing second messenger cyclic ADP ribose (cADPR) might also directly activate Ca2+ entry via TRPM2. Here we will review the status of this discussion.


Asunto(s)
ADP-Ribosa Cíclica/metabolismo , Canales Catiónicos TRPM/metabolismo , Animales , Calcio/metabolismo , Humanos , Unión Proteica , Transducción de Señal , Canales Catiónicos TRPM/genética
11.
RSC Adv ; 10(3): 1776-1785, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31934327

RESUMEN

Adenosine 5'-diphosphate ribose (ADPR) is an intracellular signalling molecule generated from nicotinamide adenine dinucleotide (NAD+). Synthetic ADPR analogues can shed light on the mechanism of activation of ADPR targets and their downstream effects. Such chemical biology studies, however, are often challenging due to the negatively charged pyrophosphate, also sensitive to cellular pyrophosphatases, and prior work on an initial ADPR target, the transient receptor potential cation channel TRPM2, showed complete pyrophosphate group replacement to be a step too far in maintaining biological activity. Thus, we designed ADPR analogues with just one of the negatively charged phosphate groups removed, by employing a phosphonoacetate linker. Synthesis of two novel phosphonoacetate ADPR analogues is described via tandem N,N'-dicyclohexylcarbodiimide coupling to phosphonoacetic acid. Neither analogue, however, showed significant agonist or antagonist activity towards TRPM2, underlining the importance of a complete pyrophosphate motif in activation of this particular receptor.

12.
Cancers (Basel) ; 13(1)2020 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-33396591

RESUMEN

The nucleotides ATP and NAD+ are released from stressed cells as endogenous danger signals. Ecto-enzymes in the tumor microenvironment hydrolyze these inflammatory nucleotides to immunosuppressive adenosine, thereby, hampering anti-tumor immune responses. The NAD+ hydrolase CD38 is expressed at high levels on the cell surface of multiple myeloma (MM) cells. Daratumumab, a CD38-specific monoclonal antibody promotes cytotoxicity against MM cells. With long CDR3 loops, nanobodies and nanobody-based heavy chain antibodies (hcAbs) might bind to cavities on CD38 and thereby inhibit its enzyme activity more potently than conventional antibodies. The goal of our study was to establish assays for monitoring the enzymatic activities of CD38 on the cell surface of tumor cells and to assess the effects of CD38-specific antibodies on these activities. We monitored the enzymatic activity of CD38-expressing MM and other tumor cell lines, using fluorometric and HPLC assays. Our results showed that daratumumab and hcAb MU1067 inhibit the ADPR cyclase but not the NAD+ hydrolase activity of CD38-expressing MM cells. We conclude that neither clinically approved daratumumab nor recently developed nanobody-derived hcAbs provide a second mode of action against MM cells. Thus, there remains a quest for "double action" CD38-inhibitory antibodies.

13.
Cell Calcium ; 85: 102111, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31812825

RESUMEN

The TRPM (transient receptor potential melastatin) family belongs to the superfamily of TRP cation channels. The TRPM subfamily is composed of eight members that are involved in diverse biological functions such as temperature sensing, inflammation, insulin secretion, and redox sensing. Since the first cloning of TRPM1 in 1998, tremendous progress has been made uncovering the function, structure, and pharmacology of this family. Complete structures of TRPM2, TRPM4, and TRPM8, as well as a partial structure of TRPM7, have been determined by cryo-EM, providing insights into their channel assembly, ion permeation, gating mechanisms, and structural pharmacology. Here we summarize the current knowledge about channel structure, emphasizing general features and principles of the structure of TRPM channels discovered since 2017. We also discuss some of the key unresolved issues in the field, including the molecular mechanisms underlying voltage and temperature dependence, as well as the functions of the TRPM channels' C-terminal domains.


Asunto(s)
Canales Catiónicos TRPM/química , Animales , Sitios de Unión , Humanos , Activación del Canal Iónico , Ligandos , Modelos Moleculares , Dominios Proteicos
14.
J Org Chem ; 84(10): 6143-6157, 2019 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-30978018

RESUMEN

TRPM2 (transient receptor potential cation channel, subfamily M, member 2) is a nonselective cation channel involved in the response to oxidative stress and in inflammation. Its role in autoimmune and neurodegenerative diseases makes it an attractive pharmacological target. Binding of the nucleotide adenosine 5'-diphosphate ribose (ADPR) to the cytosolic NUDT9 homology (NUDT9 H) domain activates the channel. A detailed understanding of how ADPR interacts with the TRPM2 ligand binding domain is lacking, hampering the rational design of modulators, but the terminal ribose of ADPR is known to be essential for activation. To study its role in more detail, we designed synthetic routes to novel analogues of ADPR and 2'-deoxy-ADPR that were modified only by removal of a single hydroxyl group from the terminal ribose. The ADPR analogues were obtained by coupling nucleoside phosphorimidazolides to deoxysugar phosphates. The corresponding C2″-based analogues proved to be unstable. The C1″- and C3″-ADPR analogues were evaluated electrophysiologically by patch-clamp in TRPM2-expressing HEK293 cells. In addition, a compound with all hydroxyl groups of the terminal ribose blocked as its 1″-ß- O-methyl-2″,3″- O-isopropylidene derivative was evaluated. Removal of either C1″ or C3″ hydroxyl groups from ADPR resulted in loss of agonist activity. Both these modifications and blocking all three hydroxyl groups resulted in TRPM2 antagonists. Our results demonstrate the critical role of these hydroxyl groups in channel activation.


Asunto(s)
Adenosina Difosfato Ribosa/análogos & derivados , Sondas Moleculares/síntesis química , Sondas Moleculares/metabolismo , Canales Catiónicos TRPM/metabolismo , Técnicas de Química Sintética , Células HEK293 , Humanos , Modelos Moleculares , Sondas Moleculares/química , Conformación Proteica , Canales Catiónicos TRPM/química
15.
Purinergic Signal ; 15(2): 155-166, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31016551

RESUMEN

ATP and its metabolites are important extracellular signal transmitters acting on purinergic P2 and P1 receptors. Most cells can actively secrete ATP in response to a variety of external stimuli such as gating of the P2X7 receptor. We used Yac-1 murine lymphoma cells to study P2X7-mediated ATP release. These cells co-express P2X7 and ADP-ribosyltransferase ARTC2, permitting gating of P2X7 by NAD+-dependent ADP-ribosylation without the need to add exogenous ATP. Yac-1 cells released ATP into the extracellular space within minutes after stimulation with NAD+. This was blocked by pre-incubation with the inhibitory P2X7-specific nanobody 13A7. Gating of P2X7 for 3 h significantly decreased intracellular ATP levels in living cells, but these had returned to normal by 20 h. P2X7-mediated ATP release was dependent on a rise in cytosolic calcium and the depletion of intracellular potassium, but was not blocked by inhibitors of pannexins or connexins. We used genetically encoded FRET-based ATP sensors targeted to the cytosol to image P2X7-mediated changes in the distribution of ATP in 3T3 fibroblasts co-expressing P2X7 and ARTC2 and in Yac-1 cells. In response to NAD+, we observed a marked depletion of ATP in the cytosol. This study demonstrates the potential of ATP sensors as tools to study regulated ATP release by other cell types under other conditions.


Asunto(s)
Adenosina Trifosfato/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Células 3T3 , Animales , Línea Celular Tumoral , Citosol/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Ratones
16.
Biochem Soc Trans ; 47(1): 329-337, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30674608

RESUMEN

Adenine nucleotides (AdNs) play important roles in immunity and inflammation. Extracellular AdNs, such as adenosine triphosphate (ATP) or nicotinamide adenine dinucleotide (NAD) and their metabolites, act as paracrine messengers by fine-tuning both pro- and anti-inflammatory processes. Moreover, intracellular AdNs derived from ATP or NAD play important roles in many cells of the immune system, including T lymphocytes, macrophages, neutrophils and others. These intracellular AdNs are signaling molecules that transduce incoming signals into meaningful cellular responses, e.g. activation of immune responses against pathogens.


Asunto(s)
Nucleótidos de Adenina/metabolismo , Inflamación/metabolismo , Macrófagos/inmunología , Neutrófilos/inmunología , Sistemas de Mensajero Secundario , Linfocitos T/inmunología , Adenosina Trifosfato/metabolismo , Humanos , Macrófagos/metabolismo , NAD/metabolismo , Neutrófilos/metabolismo , Comunicación Paracrina , Transducción de Señal , Linfocitos T/metabolismo
17.
RSC Adv ; 9(20): 11194-11201, 2019 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-35520244

RESUMEN

Nanowire substrates play an increasingly important role for cell cultures as an approach for hybrid bio-semiconductor junctions. We investigate Jurkat T cells and neurons from mice cultured on Al2O3 coated ordered and randomly distributed nanowires. Cell viability was examined by life/membrane staining reporting comparable viability on planar and nanowire substrates. Imaging the hybrid interface reveals a wrapping of the cell membrane around the very nanowire tip. Patch clamp recordings show similar electrophysiological responses on each type of nanowires compared to planar control substrates. We demonstrate that the morphological characteristic of the nanowire substrate plays a subordinate role which opens up the arena for a large range of nanowire substrates in a functionalized application such as stimulation or sensing.

19.
Biochim Biophys Acta Mol Cell Res ; 1866(7): 1189-1196, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30472140

RESUMEN

The NAD-glycohydrolase/ADP-ribosyl cyclase CD38 catalyzes the metabolism of nicotinamide adenine dinucleotide (NAD) to the Ca2+ mobilizing second messengers ADP-ribose (ADPR), 2'-deoxy-ADPR, and cyclic ADP-ribose (cADPR). In the present study, we investigated binding and metabolism of NAD by a soluble fragment of human CD38, sCD38, and its catalytically inactive mutant by monitoring changes in endogenous tryptophan (Trp) fluorescence. Addition of NAD resulted in a concentration-dependent decrease in sCD38 fluorescence that is mainly caused by the Trp residue W189. Amplitude of the fluorescence decrease was fitted as one-site binding curve revealing a dissociation constant for NAD of 29 µM. A comparable dissociation constant was found with the catalytically inactive sCD38 mutant (KD 37 µM NAD) indicating that binding of NAD is not significantly affected by the mutation. The NAD-induced decrease in Trp fluorescence completely recovered in case of sCD38. Kinetics of recovery was slowed down with decreasing temperature and sCD38 concentration and increasing NAD concentration demonstrating that recovery in fluorescence is proportional to the enzymatic activity of sCD38. Accordingly, recovery in fluorescence was not observed with the catalytically inactive mutant. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.


Asunto(s)
ADP-Ribosil Ciclasa 1/química , Glicoproteínas de Membrana/química , NAD/química , ADP-Ribosil Ciclasa 1/genética , ADP-Ribosil Ciclasa 1/metabolismo , Sitios de Unión , Células HEK293 , Humanos , Cinética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , NAD/metabolismo , Triptófano/química , Triptófano/genética , Triptófano/metabolismo
20.
Biochim Biophys Acta Mol Cell Res ; 1866(7): 1162-1170, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30584900

RESUMEN

TRPM2 is a non-selective, Ca2+-permeable cation channel, which plays a role in cell death but also contributes to diverse immune cell functions. In addition, TRPM2 contributes to the control of body temperature and is involved in perception of non-noxious heat and thermotaxis. TRPM2 is regulated by many factors including Ca2+, ADPR, 2'-deoxy-ADPR, Ca2+-CaM, and temperature. However, the molecular basis for the temperature sensitivity of TRPM2 as well as the interplay between the regulatory factors is still not understood. Here we identify a novel CaM-binding site in the unique NudT9H domain of TRPM2. Using a multipronged biophysical approach we show that binding of Ca2+-CaM to this site occurs upon partial unfolding at temperatures >35 °C and prevents further thermal destabilization. In combination with patch-clamp measurements of full-length TRPM2 our results suggest a role of this CaM-binding site in the temperature sensitivity of TRPM2. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.


Asunto(s)
Calor , Canales Catiónicos TRPM/química , Secuencias de Aminoácidos , Células HEK293 , Humanos , Dominios Proteicos , Estabilidad Proteica , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA