Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 105, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167825

RESUMEN

The infant gut microbiome is impacted by early-life feeding, as human milk oligosaccharides (HMOs) found in breastmilk cannot be digested by infants and serve as nutrients for their gut bacteria. While the vast majority of HMO-utilization research has focused on Bifidobacterium species, recent studies have suggested additional HMO-utilizers, mostly Bacteroides, yet their utilization mechanism is poorly characterized. Here, we investigate Bacteroides dorei isolates from breastfed-infants and identify that polysaccharide utilization locus (PUL) 33 enables B. dorei to utilize sialylated HMOs. We perform transcriptional profiling and identity upregulated genes when growing on sialylated HMOs. Using CRISPR-Cas12 to knock-out four PUL33 genes, combined with complementation assays, we identify GH33 as the critical gene in PUL33 for sialylated HMO-utilization. This demonstration of an HMO-utilization system by Bacteroides species isolated from infants opens the way to further characterization of additional such systems, to better understand HMO-utilization in the infant gut.


Asunto(s)
Sistemas CRISPR-Cas , Leche Humana , Lactante , Humanos , Sistemas CRISPR-Cas/genética , Oligosacáridos , Bacteroides/genética
2.
Front Cell Infect Microbiol ; 12: 864819, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35573785

RESUMEN

The deadly malaria parasite, Plasmodium falciparum, contains a unique subcellular organelle termed the apicoplast, which is a clinically-proven antimalarial drug target. The apicoplast is a plastid with essential metabolic functions that evolved via secondary endosymbiosis. As an ancient endosymbiont, the apicoplast retained its own genome and it must be inherited by daughter cells during cell division. During the asexual replication of P. falciparum inside human red blood cells, both the parasite, and the apicoplast inside it, undergo massive morphological changes, including DNA replication and division. The apicoplast is an integral part of the cell and thus its development is tightly synchronized with the cell cycle. At the same time, certain aspects of its dynamics are independent of nuclear division, representing a degree of autonomy in organelle biogenesis. Here, we review the different aspects of organelle dynamics during P. falciparum intraerythrocytic replication, summarize our current understanding of these processes, and describe the many open questions in this area of parasite basic cell biology.


Asunto(s)
Apicoplastos , Malaria Falciparum , Parásitos , Plasmodium , Animales , Apicoplastos/genética , Apicoplastos/metabolismo , Ciclo Celular , División Celular , Humanos , Malaria Falciparum/metabolismo , Parásitos/metabolismo , Plasmodium/metabolismo , Plasmodium falciparum/genética , Proteínas Protozoarias/genética
3.
mSphere ; 6(2)2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33731471

RESUMEN

Anat Florentin works in the field of molecular parasitology, studying the cell biology of malaria parasites. In this mSphere of Influence article, she reflects how the book Brave Genius: a Scientist, a Philosopher, and Their Daring Adventures from the French Resistance to the Nobel Prize by Sean B. Carroll (2013) made a powerful impact on her by telling scientific stories in the context of dramatic life events.


Asunto(s)
Coraje , Estilo de Vida , Ciencia , Libros , Femenino , Humanos , Narración
4.
Sci Rep ; 10(1): 13264, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32764679

RESUMEN

The cis-polyisoprenoid lipids namely polyprenols, dolichols and their derivatives are linear polymers of several isoprene units. In eukaryotes, polyprenols and dolichols are synthesized as a mixture of four or more homologues of different length with one or two predominant species with sizes varying among organisms. Interestingly, co-occurrence of polyprenols and dolichols, i.e. detection of a dolichol along with significant levels of its precursor polyprenol, are unusual in eukaryotic cells. Our metabolomics studies revealed that cis-polyisoprenoids are more diverse in the malaria parasite Plasmodium falciparum than previously postulated as we uncovered active de novo biosynthesis and substantial levels of accumulation of polyprenols and dolichols of 15 to 19 isoprene units. A distinctive polyprenol and dolichol profile both within the intraerythrocytic asexual cycle and between asexual and gametocyte stages was observed suggesting that cis-polyisoprenoid biosynthesis changes throughout parasite's development. Moreover, we confirmed the presence of an active cis-prenyltransferase (PfCPT) and that dolichol biosynthesis occurs via reduction of the polyprenol to dolichol by an active polyprenol reductase (PfPPRD) in the malaria parasite.


Asunto(s)
Dolicoles/aislamiento & purificación , Metabolómica/métodos , Plasmodium falciparum/crecimiento & desarrollo , Vías Biosintéticas , Dolicoles/biosíntesis , Regulación del Desarrollo de la Expresión Génica , Plasmodium falciparum/metabolismo , Poliprenoles/aislamiento & purificación , Poliprenoles/metabolismo , Proteínas Protozoarias/genética
5.
Proc Natl Acad Sci U S A ; 117(24): 13719-13729, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32482878

RESUMEN

The human malaria parasite, Plasmodium falciparum, contains an essential plastid called the apicoplast. Most apicoplast proteins are encoded by the nuclear genome and it is unclear how the plastid proteome is regulated. Here, we study an apicoplast-localized caseinolytic-protease (Clp) system and how it regulates organelle proteostasis. Using null and conditional mutants, we demonstrate that the P. falciparum Clp protease (PfClpP) has robust enzymatic activity that is essential for apicoplast biogenesis. We developed a CRISPR/Cas9-based system to express catalytically dead PfClpP, which showed that PfClpP oligomerizes as a zymogen and is matured via transautocatalysis. The expression of both wild-type and mutant Clp chaperone (PfClpC) variants revealed a functional chaperone-protease interaction. Conditional mutants of the substrate-adaptor (PfClpS) demonstrated its essential function in plastid biogenesis. A combination of multiple affinity purification screens identified the Clp complex composition as well as putative Clp substrates. This comprehensive study reveals the molecular composition and interactions influencing the proteolytic function of the apicoplast Clp system and demonstrates its central role in the biogenesis of the plastid in malaria parasites.


Asunto(s)
Apicoplastos/enzimología , Endopeptidasa Clp/metabolismo , Plasmodium falciparum/enzimología , Proteínas Protozoarias/metabolismo , Animales , Apicoplastos/genética , Endopeptidasa Clp/genética , Humanos , Malaria/parasitología , Biogénesis de Organelos , Plasmodium falciparum/genética , Proteolisis , Proteínas Protozoarias/genética
6.
Cell Microbiol ; 22(7): e13215, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32388921

RESUMEN

The ability of eukaryotic parasites from the phylum Apicomplexa to cause devastating diseases is predicated upon their ability to maintain faithful and precise protein trafficking mechanisms. Their parasitic life cycle depends on the trafficking of effector proteins to the infected host cell, transport of proteins to several critical organelles required for survival, as well as transport of parasite and host proteins to the digestive organelles to generate the building blocks for parasite growth. Several recent studies have shed light on the molecular mechanisms parasites utilise to transform the infected host cells, transport proteins to essential metabolic organelles and for biogenesis of organelles required for continuation of their life cycle. Here, we review key pathways of protein transport originating and branching from the endoplasmic reticulum, focusing on the essential roles of chaperones in these processes. Further, we highlight key gaps in our knowledge that prevents us from building a holistic view of protein trafficking in these deadly human pathogens.


Asunto(s)
Malaria/parasitología , Transporte de Proteínas/fisiología , Proteínas Protozoarias/metabolismo , Animales , Apicomplexa/metabolismo , Apicoplastos , Retículo Endoplásmico/metabolismo , Humanos , Parásitos , Vacuolas
7.
Cell Microbiol ; 21(9): e13042, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31087747

RESUMEN

The vast majority of malaria mortality is attributed to one parasite species: Plasmodium falciparum. Asexual replication of the parasite within the red blood cell is responsible for the pathology of the disease. In Plasmodium, the endoplasmic reticulum (ER) is a central hub for protein folding and trafficking as well as stress response pathways. In this study, we tested the role of an uncharacterised ER protein, PfGRP170, in regulating these key functions by generating conditional mutants. Our data show that PfGRP170 localises to the ER and is essential for asexual growth, specifically required for proper development of schizonts. PfGRP170 is essential for surviving heat shock, suggesting a critical role in cellular stress response. The data demonstrate that PfGRP170 interacts with the Plasmodium orthologue of the ER chaperone, BiP. Finally, we found that loss of PfGRP170 function leads to the activation of the Plasmodium eIF2α kinase, PK4, suggesting a specific role for this protein in this parasite stress response pathway.


Asunto(s)
Retículo Endoplásmico/metabolismo , Chaperonas Moleculares/metabolismo , Plasmodium falciparum/crecimiento & desarrollo , Proteínas Protozoarias/metabolismo , Estrés del Retículo Endoplásmico , Eritrocitos/metabolismo , Eritrocitos/parasitología , Proteínas HSP70 de Choque Térmico/genética , Respuesta al Choque Térmico/genética , Humanos , Espectrometría de Masas , Chaperonas Moleculares/genética , Mutación , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Plasmodium falciparum/patogenicidad , Esquizontes/genética , Esquizontes/metabolismo , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo
8.
J Vis Exp ; (139)2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30295650

RESUMEN

Malaria is a significant cause of morbidity and mortality worldwide. This disease, which primarily affects those living in tropical and subtropical regions, is caused by infection with Plasmodium parasites. The development of more effective drugs to combat malaria can be accelerated by improving our understanding of the biology of this complex parasite. Genetic manipulation of these parasites is key to understanding their biology; however, historically the genome of P. falciparum has been difficult to manipulate. Recently, CRISPR/Cas9 genome editing has been utilized in malaria parasites, allowing for easier protein tagging, generation of conditional protein knockdowns, and deletion of genes. CRISPR/Cas9 genome editing has proven to be a powerful tool for advancing the field of malaria research. Here, we describe a CRISPR/Cas9 method for generating glmS-based conditional knockdown mutants in P. falciparum. This method is highly adaptable to other types of genetic manipulations, including protein tagging and gene knockouts.


Asunto(s)
Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Malaria Falciparum/genética , Parásitos/genética , Animales , Humanos
9.
Nat Commun ; 9(1): 2806, 2018 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-30022065

RESUMEN

Maintenance of tissue integrity during development and homeostasis requires the precise coordination of several cell-based processes, including cell death. In animals, the majority of such cell death occurs by apoptosis, a process mediated by caspase proteases. To elucidate the role of caspases in tissue integrity, we investigated the behavior of Drosophila epithelial cells that are severely compromised for caspase activity. We show that these cells acquire migratory and invasive capacities, either within 1-2 days following irradiation or spontaneously during development. Importantly, low levels of effector caspase activity, which are far below the threshold required to induce apoptosis, can potently inhibit this process, as well as a distinct, developmental paradigm of primordial germ cell migration. These findings may have implications for radiation therapy in cancer treatment. Furthermore, given the presence of caspases throughout metazoa, our results could imply that preventing unwanted cell migration constitutes an ancient non-apoptotic function of these proteases.


Asunto(s)
Apoptosis/genética , Caspasas/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Células Epiteliales/enzimología , Animales , Apoptosis/efectos de la radiación , Caspasas/deficiencia , Movimiento Celular/efectos de la radiación , Proteínas de Drosophila/deficiencia , Drosophila melanogaster/citología , Drosophila melanogaster/enzimología , Drosophila melanogaster/efectos de la radiación , Células Epiteliales/citología , Células Epiteliales/efectos de la radiación , Femenino , Rayos gamma , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Homeostasis/genética , Homeostasis/efectos de la radiación , Masculino , Transducción de Señal
10.
Cell Rep ; 21(7): 1746-1756, 2017 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-29141210

RESUMEN

The deadly malaria parasite Plasmodium falciparum contains a nonphotosynthetic plastid, known as the apicoplast, that functions to produce essential metabolites, and drugs that target the apicoplast are clinically effective. Several prokaryotic caseinolytic protease (Clp) genes have been identified in the Plasmodium genome. Using phylogenetic analysis, we focused on the Clp members that may form a regulated proteolytic complex in the apicoplast. We genetically targeted members of this complex and generated conditional mutants of the apicoplast-localized PfClpC chaperone and PfClpP protease. Conditional inhibition of the PfClpC chaperone resulted in growth arrest and apicoplast loss and was rescued by addition of the essential apicoplast-derived metabolite IPP. Using a double-conditional mutant parasite line, we discovered that the chaperone activity is required to stabilize the mature protease, revealing functional interactions. These data demonstrate the essential function of PfClpC in maintaining apicoplast integrity and its role in regulating the proteolytic activity of the Clp complex.


Asunto(s)
Apicoplastos/enzimología , Endopeptidasa Clp/metabolismo , Plasmodium falciparum/enzimología , Proteínas Protozoarias/metabolismo , Células Cultivadas , Endopeptidasa Clp/química , Endopeptidasa Clp/genética , Estabilidad de Enzimas , Humanos , Mutación , Plasmodium falciparum/crecimiento & desarrollo , Proteínas Protozoarias/química , Proteínas Protozoarias/genética
11.
mSphere ; 2(5)2017.
Artículo en Inglés | MEDLINE | ID: mdl-28959740

RESUMEN

Export of parasite proteins into the host erythrocyte is essential for survival of Plasmodium falciparum during its asexual life cycle. While several studies described key factors within the parasite that are involved in protein export, the mechanisms employed to traffic exported proteins within the host cell are currently unknown. Members of the Hsp70 family of chaperones, together with their Hsp40 cochaperones, facilitate protein trafficking in other organisms, and are thus likely used by P. falciparum in the trafficking of its exported proteins. A large group of Hsp40 proteins is encoded by the parasite and exported to the host cell, but only one Hsp70, P. falciparum Hsp70x (PfHsp70x), is exported with them. PfHsp70x is absent in most Plasmodium species and is found only in P. falciparum and closely related species that infect apes. Herein, we have utilized clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 genome editing in P. falciparum to investigate the essentiality of PfHsp70x. We show that parasitic growth was unaffected by knockdown of PfHsp70x using both the dihydrofolate reductase (DHFR)-based destabilization domain and the glmS ribozyme system. Similarly, a complete gene knockout of PfHsp70x did not affect the ability of P. falciparum to proceed through its intraerythrocytic life cycle. The effect of PfHsp70x knockdown/knockout on the export of proteins to the host red blood cell (RBC), including the critical virulence factor P. falciparum erythrocyte membrane protein 1 (PfEMP1), was tested, and we found that this process was unaffected. These data show that although PfHsp70x is the sole exported Hsp70, it is not essential for the asexual development of P. falciparum. IMPORTANCE Half of the world's population lives at risk for malaria. The intraerythrocytic life cycle of Plasmodium spp. is responsible for clinical manifestations of malaria; therefore, knowledge of the parasite's ability to survive within the erythrocyte is needed to combat the deadliest agent of malaria, P. falciparum. An outstanding question in the field is how P. falciparum undertakes the essential process of trafficking its proteins within the host cell. In most organisms, chaperones such as Hsp70 are employed in protein trafficking. Of the Plasmodium species causing human disease, the chaperone PfHsp70x is unique to P. falciparum, and it is the only parasite protein of its kind exported to the host (S. Külzer et al., Cell Microbiol 14:1784-1795, 2012). This has placed PfHsp70x as an ideal target to inhibit protein trafficking and kill the parasite. However, we show that PfHsp70x is not required for export of parasite effectors and it is not essential for parasite survival inside the RBC.

12.
J Cell Biol ; 196(4): 513-27, 2012 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-22351928

RESUMEN

Essentially, all metazoan cells can undergo apoptosis, but some cells are more sensitive than others to apoptotic stimuli. To date, it is unclear what determines the apoptotic potential of the cell. We set up an in vivo system for monitoring and comparing the activity levels of the two main effector caspases in Drosophila melanogaster, Drice and Dcp-1. Both caspases were activated by the apoptosome after irradiation. However, whereas each caspase alone could induce apoptosis, Drice was a more effective inducer of apoptosis than Dcp-1, which instead had a role in establishing the rate of cell death. These functional differences are attributed to their intrinsic properties rather than merely their tissue specificities. Significantly, the levels of the procaspases are directly proportional to their activity levels and play a key role in determining the cell's sensitivity to apoptosis. Finally, we provide evidence for the existence of a cellular execution threshold of caspase activity, which must be reached to induce apoptosis.


Asunto(s)
Apoptosis/fisiología , Caspasas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Animales , Animales Modificados Genéticamente , Apoptosis/efectos de la radiación , Apoptosomas , Western Blotting , Caspasas/genética , Proliferación Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Femenino , Técnica del Anticuerpo Fluorescente , Rayos gamma , Masculino , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
13.
Eukaryot Cell ; 4(11): 1775-84, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16278444

RESUMEN

Transcriptional silencing of an amoebapore (ap-a) gene occurred in Entamoeba histolytica following the transfection of plasmids containing a DNA segment (473 bp) homologous to the 5' upstream region of the gene (R. Bracha, Y. Nuchamowitz, and D. Mirelman, Eukaryot. Cell 2:295-305, 2003). This segment contains the promoter region of the ap-a gene, a T-rich stretch, followed by a truncated SINE1 (short interspersed element 1) that is transcribed from the antisense strand. Transfection of plasmids containing truncated SINE1 sequences which lack their 3' regulatory elements upstream of the ap-a gene was essential for the downstream silencing of the ap-a gene while transfection with plasmids containing the entire SINE1 sequence or without the T-rich stretch promoted the overexpression of the ap-a gene. Both the T-rich stretch and sequences of the 5' SINE1 were essential for the transcription of SINE1. RNA extracts from gene-silenced cultures showed small amounts of short (approximately 140-nucleotide), single-stranded molecules with homology to SINE1 but no short interfering RNA. Chromatin immunoprecipitation analysis with an antibody against methylated K4 of histone H3 showed a demethylation of K4 at the domain of the ap-a gene, indicating transcriptional inactivation. These results suggest the involvement of SINE1 in triggering the gene silencing and the role of histone modification in its epigenetic maintenance.


Asunto(s)
Entamoeba histolytica/genética , Epigénesis Genética , Silenciador del Gen , Canales Iónicos/genética , Proteínas Protozoarias/genética , Elementos de Nucleótido Esparcido Corto , Transcripción Genética , Animales , Citosina/metabolismo , Entamoeba histolytica/fisiología , Genes Reporteros , Histonas/metabolismo , Canales Iónicos/metabolismo , Sistemas de Lectura Abierta , Plásmidos/genética , Plásmidos/metabolismo , Proteínas Protozoarias/metabolismo , ARN/genética , ARN/metabolismo
14.
Biochim Biophys Acta ; 1612(1): 76-82, 2003 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-12729932

RESUMEN

Lyophilized unilamellar liposomes (ULV), the dosage form of choice for shelf-life, revert upon reconstitution to the larger multilamellar liposomes (MLV), which is detrimental to the many carrier-mediated therapies that require small particles. High doses of sugars such as trehalose, sucrose and others, included in the original formulations for cryoprotection, were shown to prevent the conversion to MLV. In this study we set out to test whether hyaluronan (HA), the surface-bound ligand in our previously developed targeted bioadhesive liposomes (BAL), can also act as a cryoprotectant. The studies included structural and physicochemical characterization of original and reconstituted hyaluronan-ULV (HA-ULV). For each HA-ULV, similar regular ULV (RL-ULV) served as controls. Four properties were tested: particle size, zeta potential, encapsulation efficiency and half-life of drug release (tau(1/2)), for three drugs-chloramphenicol (CAM), vinblastine (VIN) and mitomycin C (MMC). Encapsulation efficiencies of the original systems were quite alike for similar RL-ULV and HA-ULV ranging from 25% to 70%. All systems acted as sustained-release drug depots, tau(1/2) ranging from 1.3 to 5.3 days. Drug species and lipid composition were the major determinants of encapsulation and release magnitudes. By all tests, as anticipated, lyophilization generated significant changes in the reconstituted RL-ULV: 17-fold increase in diameter; tripling of zeta potential; 25-60% drop in encapsulation efficiencies; 25-30% decrease in tau(1/2). In contrast, the reconstituted HA-ULV retained the same dimensions, zeta potentials, encapsulation efficiencies and tau(1/2) of the original systems. These data clearly show HA to be a cryoprotectant, adding another clinically relevant advantage to HA-BAL. We propose that, like the sugars, HA cryoprotects by providing substitute structure-stabilizing H-bonds.


Asunto(s)
Crioprotectores/administración & dosificación , Liofilización , Ácido Hialurónico/administración & dosificación , Liposomas/administración & dosificación , Química Farmacéutica , Difusión , Liposomas/química , Microscopía Electrónica de Rastreo , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA