Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant Cell Physiol ; 63(12): 1764-1786, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-34910215

RESUMEN

Melatonin, a tryptophan-derived molecule, is endogenously generated in animal, plant, fungal and prokaryotic cells. Given its antioxidant properties, it is involved in a myriad of signaling functions associated with various aspects of plant growth and development. In higher plants, melatonin (Mel) interacts with plant regulators such as phytohormones, as well as reactive oxygen and nitrogen species including hydrogen peroxide (H2O2), nitric oxide (NO) and hydrogen sulfide (H2S). It shows great potential as a biotechnological tool to alleviate biotic and abiotic stress, to delay senescence and to conserve the sensory and nutritional quality of postharvest horticultural products which are of considerable economic importance worldwide. This review provides a comprehensive overview of the biochemistry of Mel, whose endogenous induction and exogenous application can play an important biotechnological role in enhancing the marketability and hence earnings from postharvest horticultural crops.


Asunto(s)
Melatonina , Melatonina/farmacología , Peróxido de Hidrógeno , Antioxidantes , Productos Agrícolas , Reguladores del Crecimiento de las Plantas/farmacología
2.
Food Chem ; 355: 129626, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-33780792

RESUMEN

The yellowing of florets limits the economic and nutritional value of broccoli during postharvest. We investigated mechanisms of action of 150 nM phytosulfokine α (PSKα) for delaying florets yellowing in broccoli during cold storage. Our results showed that SUMO E3 ligase (SIZ1) gene expression was higher in florets treated with PSKα, which may prevent endogenous H2O2 accumulation, resulting from the higher activity of superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase. Besides, higher expression of methionine sulfoxide reductase and cysteine peroxiredoxin genes, concomitant with higher expression of heat shock proteins 70/90 genes, may arise from higherexpression of SIZ1 gene. Lower expression and activity of phospholipase D and lipoxygenase may be liable for membrane integrity protection featured by lower malondialdehyde accumulation in florets treated with PSKα. Additionally,florets treated with PSKα exhibited higher endogenous cytokinin accumulation which may arise from higher expression of isopentenyl transferase gene, concomitant with lower expression of cytokinin oxidase gene.


Asunto(s)
Brassica/química , Brassica/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/farmacocinética , Ascorbato Peroxidasas/metabolismo , Color , Flores/química , Flores/efectos de los fármacos , Flores/metabolismo , Malondialdehído/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo
3.
J Proteomics ; 75(17): 5463-78, 2012 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-22796354

RESUMEN

In order to advance in the understanding of CI in pepper fruits, the cell ultrastructure alterations induced by CI and the physiological and metabolic changes have been studied along with the proteomic study. When stored at low temperatures bell pepper (Capsicum annuum) fruits exhibited visual CI symptoms and important alterations within the cell ultrastructure, since peroxisomes and starch grains were not detected and the structure of the chloroplast was seriously damaged in chilled tissues. Physiological and metabolic disorders were also observed in chilled fruits, such as higher ethylene production, increased MDA content, changes in sugar and organic acids and enzymatic activities. The comparative proteomic analysis between control and chilled fruits reveals that the main alterations induced by CI in bell pepper fruits are linked to redox homeostasis and carbohydrate metabolism. Thus, protein abundance in the ascorbate-glutathione cycle is altered and catalase is down-regulated. Key proteins from glycolysis, Calvin cycle and Krebs cycle are also inhibited in chilled fruits. Enolase and GAPDH are revealed as proteins that may play a key role in the development of chilling injury. This study also provides the first evidence at the protein level that cytosolic MDH is involved in abiotic stress.


Asunto(s)
Capsicum , Frío/efectos adversos , Proteoma/análisis , Capsicum/química , Capsicum/metabolismo , Capsicum/ultraestructura , Comprensión/fisiología , Electroforesis en Gel Bidimensional , Frutas/química , Frutas/metabolismo , Microscopía Electrónica de Transmisión , Modelos Biológicos , Enfermedades de las Plantas/etiología , Proteínas de Plantas/análisis , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Proteómica , Estrés Fisiológico/fisiología
4.
Plant Cell Rep ; 30(10): 1865-79, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21647638

RESUMEN

Salinity and drought have a huge impact on agriculture since there are few areas free of these abiotic stresses and the problem continues to increase. In tomato, the most important horticultural crop worldwide, there are accessions of wild-related species with a high degree of tolerance to salinity and drought. Thus, the finding of insertional mutants with other tolerance levels could lead to the identification and tagging of key genes responsible for abiotic stress tolerance. To this end, we are performing an insertional mutagenesis programme with an enhancer trap in the tomato wild-related species Solanum pennellii. First, we developed an efficient transformation method which has allowed us to generate more than 2,000 T-DNA lines. Next, the collection of S. pennelli T(0) lines has been screened in saline or drought conditions and several presumptive mutants have been selected for their salt and drought sensitivity. Moreover, T-DNA lines with expression of the reporter uidA gene in specific organs, such as vascular bundles, trichomes and stomata, which may play key roles in processes related to abiotic stress tolerance, have been identified. Finally, the growth of T-DNA lines in control conditions allowed us the identification of different development mutants. Taking into account that progenies from the lines are being obtained and that the collection of T-DNA lines is going to enlarge progressively due to the high transformation efficiency achieved, there are great possibilities for identifying key genes involved in different tolerance mechanisms to salinity and drought.


Asunto(s)
Mutagénesis Insercional/métodos , Solanum/genética , Estrés Fisiológico , ADN Bacteriano/genética , Sequías , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Ensayos Analíticos de Alto Rendimiento , Fenotipo , Salinidad , Plantas Tolerantes a la Sal/genética , Plantas Tolerantes a la Sal/fisiología , Solanum/fisiología , Transformación Genética
5.
J Agric Food Chem ; 55(13): 5213-20, 2007 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-17542607

RESUMEN

Alcohol acyltransferases (AAT) play a key role in the biosynthesis of ester aroma volatiles in fruit. Three ripening-specific recombinant AATs of cantaloupe Charentais melon fruit (Cm-AAT1, Cm-AAT3, and Cm-AAT4) are capable of synthesizing thioether esters with Cm-AAT1 being by far the most active. All proteins, as well as AAT(s) extracted from melon fruit, are active as tetramers of around 200 kDa. Kinetic analysis demonstrated that CoA-SH, a product of the reaction, is an activator at low concentrations and an inhibitor at higher concentrations. This was confirmed by the addition of phosphotransacetylase at various concentrations, capable of modulating the level of CoA-SH in the reaction medium. Site-directed mutagenesis of some amino acids that were specific to the Cm-AAT sequences into amino acids that were consensus to other characterized AATs greatly affected the selectivity of the original protein and the number of esters produced.


Asunto(s)
Aciltransferasas/química , Aciltransferasas/metabolismo , Alcoholes/metabolismo , Coenzima A/fisiología , Cucurbitaceae/enzimología , Frutas/enzimología , Aciltransferasas/genética , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...