Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 12(7)2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39065196

RESUMEN

This work analyzes the production of total lipids and the content of CoQ9 and CoQ10 in the biomass of Thraustochytrium sp. RT2316-16 grown in media containing a single amino acid at a concentration of 1 g L-1 as the sole nitrogen source; glucose (5 g L-1) was used as the carbon source. Biomass concentration and the content of total lipids and CoQ were determined as a function of the incubation time; ten amino acids were evaluated. The final concentration of the total biomass was found to be between 2.2 ± 0.1 (aspartate) and 3.9 ± 0.1 g L-1 (glutamate). The biomass grown in media containing glutamate, serine or phenylalanine reached a content of total lipids higher than 20% of the cell dry weight (DW) after 72, 60 and 72 h of incubation, respectively. The highest contents of CoQ9 (39.0 ± 0.7 µg g-1 DW) and CoQ10 (167.4 ± 3.4 mg g-1 DW) in the biomass of the thraustochytrid were obtained when glutamate and cysteine were used as the nitrogen source, respectively. Fatty acid oxidation, which decreased the total lipid content during the first 12 h of incubation, and the oxidation of hydrogen sulfide when cysteine was the nitrogen source, might be related to the content of CoQ10 in the biomass of the thraustochytrid.

2.
Biotechnol Bioeng ; 121(6): 1986-2001, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38500406

RESUMEN

Marine thraustochytrids produce metabolically important lipids such as the long-chain omega-3 polyunsaturated fatty acids, carotenoids, and sterols. The growth and lipid production in thraustochytrids depends on the composition of the culture medium that often contains yeast extract as a source of amino acids. This work discusses the effects of individual amino acids provided in the culture medium as the only source of nitrogen, on the production of biomass and lipids by the thraustochytrid Thraustochytrium sp. RT2316-16. A reconstructed metabolic network based on the annotated genome of RT2316-16 in combination with flux balance analysis was used to explain the observed growth and consumption of the nutrients. The culture kinetic parameters estimated from the experimental data were used to constrain the flux via the nutrient consumption rates and the specific growth rate of the triacylglycerol-free biomass in the genome-scale metabolic model (GEM) to predict the specific rate of ATP production for cell maintenance. A relationship was identified between the specific rate of ATP production for maintenance and the specific rate of glucose consumption. The GEM and the derived relationship for the production of ATP for maintenance were used in linear optimization problems, to successfully predict the specific growth rate of RT2316-16 in different experimental conditions.


Asunto(s)
Modelos Biológicos , Estramenopilos , Estramenopilos/metabolismo , Estramenopilos/genética , Medios de Cultivo/química , Medios de Cultivo/metabolismo , Redes y Vías Metabólicas/genética , Aminoácidos/metabolismo , Biomasa , Metabolismo de los Lípidos , Nutrientes/metabolismo , Adenosina Trifosfato/metabolismo
3.
Mar Drugs ; 21(11)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37999410

RESUMEN

Coenzyme Q (CoQ; ubiquinone) is an essential component of the respiratory chain. It is also a potent antioxidant that prevents oxidative damage to DNA, biological membranes, and lipoproteins. CoQ comprises a six-carbon ring with polar substituents that interact with electron acceptors and donors, and a hydrophobic polyisoprenoid chain that allows for its localization in cellular membranes. Human CoQ has 10 isoprenoid units (CoQ10) within the polyisoprenoid chain. Few microorganisms produce CoQ10. This work shows that Thraustochytrium sp. RT2316-16 produces CoQ10 and CoQ9. The CoQ10 content in RT2316-16 depended strongly on the composition of the growth medium and the age of the culture, whereas the CoQ9 content was less variable probably because it served a different function in the cell. Adding p-hydroxybenzoic acid to the culture media positively influenced the CoQ10 content of the cell. The absence of some B vitamins and p-aminobenzoic acid in the culture medium negatively affected the growth of RT2316-16, but reduced the decline in CoQ10 that otherwise occurred during growth. The highest content of CoQ9 and CoQ10 in the biomass were 855 µg g-1 and 10 mg g-1, respectively. The results presented here suggest that the thraustochytrid RT2316-16 can be a potential vehicle for producing CoQ10. Metabolic signals that trigger the synthesis of CoQ10 in RT2316-16 need to be determined for optimizing culture conditions.


Asunto(s)
Antioxidantes , Ubiquinona , Humanos , Antioxidantes/metabolismo , Membranas Mitocondriales/metabolismo , Estrés Oxidativo , Membrana Celular/metabolismo
4.
Mar Drugs ; 19(7)2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34356811

RESUMEN

Eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and carotenoids are needed as human dietary supplements and are essential components in commercial feeds for the production of aquacultured seafood. Microorganisms such as thraustochytrids are potential natural sources of these compounds. This research reports on the lipid and carotenoid production capacity of thraustochytrids that were isolated from coastal waters of Antarctica. Of the 22 isolates, 21 produced lipids containing EPA+DHA, and the amount of these fatty acids exceeded 20% of the total fatty acids in 12 isolates. Ten isolates were shown to produce carotenoids (27.4-63.9 µg/g dry biomass). The isolate RT2316-16, identified as Thraustochytrium sp., was the best producer of biomass (7.2 g/L in five days) rich in carotenoids (63.9 µg/g) and, therefore, became the focus of this investigation. The main carotenoids in RT2316-16 were ß-carotene and canthaxanthin. The content of EPA+DHA in the total lipids (34 ± 3% w/w in dry biomass) depended on the stage of growth of RT2316-16. Lipid and carotenoid content of the biomass and its concentration could be enhanced by modifying the composition of the culture medium. The estimated genome size of RT2316-16 was 44 Mb. Of the 5656 genes predicted from the genome, 4559 were annotated. These included genes of most of the enzymes in the elongation and desaturation pathway of synthesis of ω-3 polyunsaturated fatty acids. Carotenoid precursors in RT2316-16 were synthesized through the mevalonate pathway. A ß-carotene synthase gene, with a different domain organization compared to the gene in other thraustochytrids, explained the carotenoid profile of RT2316-16.


Asunto(s)
Carotenoides/química , Ácidos Grasos Omega-3/química , Estramenopilos , Animales , Regiones Antárticas , Organismos Acuáticos
5.
Molecules ; 26(8)2021 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-33919590

RESUMEN

Seaweed processing generates liquid fraction residual that could be used as a low-cost nutrient source for microbial production of metabolites. The Rhodotorula strain is able to produce antimicrobial compounds known as sophorolipids. Our aim was to evaluate sophorolipid production, with antibacterial activity, by marine Rhodotorula rubra using liquid fraction residual (LFR) from the brown seaweed Macrocystis pyrifera as the nutrient source. LFR having a composition of 32% w/w carbohydrate, 1% w/w lipids, 15% w/w protein and 52% w/w ash. The best culture condition for sophorolipid production was LFR 40% v/v, without yeast extract, artificial seawater 80% v/v at 15 °C by 3 growth days, with the antibacterial activity of 24.4 ± 3.1 % on Escherichia coli and 21.1 ± 3.8 % on Staphylococcus aureus. It was possible to identify mono-acetylated acidic and methyl ester acidic sophorolipid. These compounds possess potential as pathogen controllers for application in the food industry.


Asunto(s)
Macrocystis/química , Ácidos Oléicos/química , Extractos Vegetales/farmacología , Rhodotorula/efectos de los fármacos , Organismos Acuáticos/química , Ácidos Oléicos/farmacología , Extractos Vegetales/química , Rhodotorula/patogenicidad
6.
Mar Drugs ; 18(11)2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33217919

RESUMEN

Oblongichytrium RT2316-13 synthesizes lipids rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The content of these fatty acids in the total lipids depended on growth temperature. Sequencing technology was used in this work to examine the thraustochytrid's response to a decrease in growth temperature from 15 °C to 5 °C. Around 4% (2944) of the genes were differentially expressed (DE) and only a few of the DE genes (533 upregulated; 206 downregulated) had significant matches to those in the SwissProt database. Most of the annotated DE genes were related to cell membrane composition (fatty acids, sterols, phosphatidylinositol), the membrane enzymes linked to cell energetics, and membrane structure (cytoskeletal proteins and enzymes). In RT2316-13, the synthesis of long-chain polyunsaturated fatty acids occurred through ω3- and ω6-pathways. Enzymes of the alternative pathways (Δ8-desaturase and Δ9-elongase) were also expressed. The upregulation of the genes coding for a Δ5-desaturase and a Δ5-elongase involved in the synthesis of EPA and DHA, explained the enrichment of total lipid with these two long-chain fatty acids at the low temperature. This molecular response has the potential to be used for producing microbial lipids with a fatty acids profile similar to that of fish oils.


Asunto(s)
Organismos Acuáticos/genética , Eucariontes/genética , Regulación de la Expresión Génica , Metabolismo de los Lípidos/genética , Temperatura , Transcriptoma , Regiones Antárticas , Organismos Acuáticos/crecimiento & desarrollo , Organismos Acuáticos/metabolismo , delta-5 Desaturasa de Ácido Graso , Eucariontes/crecimiento & desarrollo , Eucariontes/metabolismo , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Elongasas de Ácidos Grasos/genética , Elongasas de Ácidos Grasos/metabolismo , Ácidos Grasos Insaturados/biosíntesis
7.
Biotechnol Bioeng ; 117(10): 3006-3017, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32557613

RESUMEN

Production of biomass and lipids in batch cultures of the Antarctic thraustochytrid Oblongichytrium sp. RT2316-13, is reported. The microorganism proved capable of producing nearly 67% docosahexaenoic acid (DHA) and 15% eicosapentaenoic acid (EPA) in its total lipid fraction. Biomass with a maximum total lipid content of 33.5% (wt/wt) could be produced at 15°C in batch culture using a medium containing glucose (20 g/L), yeast extract (10.5 g/L), and other minor components. A lower culture temperature (5°C) reduced biomass and lipid productivities compared to culture at 15°C, but enhanced the DHA and EPA content of the lipids by 6.4- and 3.3-fold, respectively. Both a simple minimally structured mathematical model and a more complex genome-scale metabolic model (GEM) allowed the fermentation profiles in batch cultures to be satisfactorily simulated, but the GEM provided much greater insight in the biochemical and physiological phenomena underlying the observed behavior. Unlike the simpler model, the GEM could be interrogated for the possible effects of various external factors such as oxygen supply, on the expected outcomes. In silico predictions of oxygen effects were consistent with literature observations for DHA producing thraustochytrids.


Asunto(s)
Organismos Acuáticos/metabolismo , Biotecnología/métodos , Medios de Cultivo/química , Ácidos Docosahexaenoicos/metabolismo , Ácido Eicosapentaenoico/metabolismo , Fermentación , Estramenopilos/metabolismo , Regiones Antárticas , Organismos Acuáticos/crecimiento & desarrollo , Organismos Acuáticos/aislamiento & purificación , Biomasa , Frío , Ácidos Docosahexaenoicos/análisis , Ácido Eicosapentaenoico/análisis , Estramenopilos/crecimiento & desarrollo , Estramenopilos/aislamiento & purificación
8.
Microbiologyopen ; 9(1): e00950, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31637873

RESUMEN

Thraustochytrids have been isolated from different aquatic systems; however, few studies have reported their occurrence in Antarctica. In this study, 13 strains close to strains belonging to the genera Oblongichytrium, Thraustochytrium, and Aurantiochytrium were isolated from seawater samples collected near the Antarctic Base Professor Julio Escudero (S 62°12'57' E 58°57'35″). Docosahexaenoic acid (DHA) was found in the total lipids of all the isolates; DHA content of the biomass (dry weight) varied between 3.3 and 33 mg/g under the growth conditions for isolation. Five of the Antarctic thraustochytrids were able to accumulate lipids at levels higher than 20% w/w. Two strains, RT2316-7 and RT2316-13, were selected to test the effect of the incubation temperature (at 5°C for 14 days and at 15°C for 5 days). Incubation temperature had little effect on the lipid content and biomass yield; however, its effect on the fatty acid composition was significant (p < .05). The low incubation temperature favored the accumulation of eicosapentaenoic acid (EPA), palmitic acid and stearic acid in the total lipids of RT2316-7. Percentage of EPA, DHA and the omega-6 fatty acid dihomo-γ-linolenic acid of total fatty acids of RT2316-13 was higher at the low incubation temperature. RT2316-13 accumulated the highest lipid content (30.0 ± 0.5%) with a carbon to nitrogen mass ratio equal to 16.9. On the contrary, lipid accumulation in RT2316-7 occurred at high concentration of the nitrogen sources (monosodium glutamate or yeast extract). The capability to accumulate lipids with a fatty acid profile that can be tuned through cultivation temperature make the Antarctic thraustochytrid RT2316-13 a candidate for the production of lipids with different uses.


Asunto(s)
Reactores Biológicos/microbiología , Ácidos Grasos Omega-3/biosíntesis , Estramenopilos/metabolismo , Ácido 8,11,14-Eicosatrienoico/análisis , Regiones Antárticas , Membrana Celular/fisiología , Ácidos Docosahexaenoicos/análisis , Ácido Eicosapentaenoico/análisis , Ácido Palmítico/análisis , Agua de Mar , Ácidos Esteáricos/análisis , Estramenopilos/clasificación , Estramenopilos/crecimiento & desarrollo , Estramenopilos/aislamiento & purificación , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...