Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Toxicol Environ Health A ; 85(16): 649-670, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35469539

RESUMEN

The increase in large-scale production of magnetic nanoparticles (NP) associated with the incomplete comprehensive knowledge regarding the potential risks of their use on environmental and human health makes it necessary to study the biological effects of these particles on organisms at the cellular level. The aim of this study to examine the cellular effects on fibroblast lineage LA-9 after exposure to mixed iron oxide NP (Fe3O4 NP). The following analyses were performed: field emission gun-scanning electron microscopy (SEM-FEG), dynamic light scattering (DLS), zeta potential, ultraviolet/visible region spectroscopy (UV/VIS), and attenuated total reactance-Fourier transform infrared (ATR-FTIR) spectroscopy analyses for characterization of the NP. The assays included cell viability, morphology, clonogenic potential, oxidative stress as measurement of reactive oxygen species (ROS) and nitric oxide (NO) levels, cytokines quantification interleukin 6 (IL-6) and tumor necrosis factor (TNF), NP uptake, and cell death. The size of Fe3O4 NP was 26.3 nm when evaluated in water through DLS. Fe3O4 NP did not reduce fibroblast cell viability until the highest concentration tested (250 µg/ml), which showed a decrease in clonogenic potential as well as small morphological changes after exposure for 48 and 72 hr. The NP concentration of 250 µg/ml induced enhanced ROS and NO production after 24 hr treatment. The uptake assay exhibited time-dependent Fe3O4 NP internalization at all concentrations tested with no significant cell death. Hence, exposure of fibroblasts to Fe3O4 NP-induced oxidative stress but not reduced cell viability or death. However, the decrease in the clonogenic potential at the highest concentration demonstrates cytotoxic effects attributed to Fe3O4 NP which occurred on the 7th day after exposure.


Asunto(s)
Nanopartículas , Animales , Fibroblastos , Humanos , Hierro/metabolismo , Nanopartículas Magnéticas de Óxido de Hierro , Ratones , Nanopartículas/química , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
2.
Int J Nanomedicine ; 17: 1495-1509, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35388270

RESUMEN

Purpose: Nanoparticles are resources of advanced nanotechnology being present in several products. Titanium dioxide nanoparticles are among the five most widely used NP currently expanding their benefits from the oil industry to the areas of diagnostic medicine due to their properties and small size. However, its impact on human health is still controversial in the literature. We aimed to evaluate the cytotoxicity of a new titanium NP functionalized with sodium carboxylic ligand (COOH-Na+) in human keratinocytes (HaCaT) and human fibroblasts (HDFn). Methods: The physical-chemical characterization was performed by the transmission electron microscopy (TEM), dynamic light scattering (DLS) and zeta potential techniques, respectively. MTT and LDH assays were used to assess cytotoxicity and cell membrane damage respectively, ELISA to identify the inflammatory profile and, reactive oxygen species assay and cytometry to detect reactive oxygen species and their relationship with apoptosis/necrosis mechanisms. Results: The results demonstrated a decrease in cell viability at the highest concentrations tested for both cell lines, but no change in LDH release was detected for the HaCaT. The cell membrane damage was found only at 100.0 µg/mL for the HDFn. It was demonstrated that cytotoxicity in the highest concentrations evaluated for both cell lines for the 72 h period. The HDFn showed damage to the cell membrane at a concentration of 100 µg/mL followed by a significant increase in reactive oxygen species production. No inflammatory profile was detected. The HaCaT showed apoptosis when exposed to the highest concentration evaluated and HDFn showed both apoptosis and necrosis for the same concentration. Conclusion: Thus, it is possible to conclude that the cytotoxicity mechanism differs according to the cell type evaluated, with HDFn being the most sensitive line in this case, and this mechanism can be defined in a dose and time dependent manner, since the highest concentrations also triggered death cell.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Apoptosis , Supervivencia Celular , Humanos , Nanopartículas del Metal/química , Nanopartículas del Metal/toxicidad , Nanopartículas/química , Nanopartículas/toxicidad , Necrosis/inducido químicamente , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Titanio/química , Titanio/toxicidad
3.
Photobiomodul Photomed Laser Surg ; 38(7): 413-418, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32208063

RESUMEN

Objective: The objective of this study was to evaluate the effects of application of different fluences and energies of laser in the 24-, 48-, and 72-h periods in fibroblasts originating from human skin (HFF-1). Methods: The cell used as a template for cell proliferation was HFF-1. For the photobiomodulation (PBM) application, a 660 nm laser with a power of 40 mW and energies of 0.84, 1.40, 5.88, and 6.72 J was used. Five experimental groups were studied: one control group (CG) with simulated PBM and four groups that received PBM in different doses. The changes observed after laser irradiation were evaluated by cell viability (trypan blue) and proliferation [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)] tests. Intergroup comparisons were performed using two-way analysis of variance and the Tukey post hoc test (software GraphPad Prism 7.0). Results: In the trypan blue test, the total number of cells was significantly different between the irradiated groups and the CG at all times studied. The total number of cells increased in laser group (LG)1 (0.84 J) and LG2 (1.40 J) and decreased in LG4 (6.72 J). The mitochondrial activity increased significantly in LG1 and LG2 at 48 and 72 h and decreased in LG3 (5.88 J) and LG4 (6.72 J) compared with CG. Conclusions: The results indicate that the lower doses (0.45 and 0.75 J/cm2) of PBM induce the highest mitochondrial activity and cellular viability.


Asunto(s)
Fibroblastos/efectos de la radiación , Técnicas de Cultivo de Célula , Proliferación Celular/efectos de la radiación , Supervivencia Celular/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Humanos , Terapia por Luz de Baja Intensidad , Piel/citología , Piel/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...