Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Trends Biochem Sci ; 49(6): 520-531, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38643023

RESUMEN

G protein-coupled receptors (GPCRs) located at the cell surface bind extracellular ligands and convey intracellular signals via activation of heterotrimeric G proteins. Traditionally, G protein signaling was viewed to occur exclusively at this subcellular region followed by rapid desensitization facilitated by ß-arrestin (ßarr)-mediated G protein uncoupling and receptor internalization. However, emerging evidence over the past 15 years suggests that these ßarr-mediated events do not necessarily terminate receptor signaling and that some GPCRs continue to activate G proteins after having been internalized into endosomes. Here, we review the recently elucidated mechanistic basis underlying endosomal GPCR signaling and discuss physiological implications and pharmacological targeting of this newly appreciated signaling mode.


Asunto(s)
Endosomas , Receptores Acoplados a Proteínas G , Transducción de Señal , Endosomas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Humanos , Animales , beta-Arrestinas/metabolismo
2.
Eur J Pharmacol ; 889: 173595, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32986985

RESUMEN

Human embryonic kidney (HEK) 293 cells were co-transfected with plasmids for the expression of mCherry fluorescent protein-tagged FFA4 receptors and the enhanced green fluorescent protein-tagged Rab proteins involved in retrograde transport and recycling, to study their possible interaction through Förster Resonance Energy Transfer (FRET), under the action of agents that induce FFA4 receptor phosphorylation and internalization through different processes, i.e., the agonist, docosahexaenoic acid, the protein kinase C activator phorbol myristate acetate, and insulin. Data indicate that FFA4 receptor internalization varied depending on the agent that induced the process. Agonist activation (docosahexaenoic acid) induced an association with early endosomes (as suggested by interaction with Rab5) and rapid recycling to the plasma membrane (as indicated by receptor interaction with Rab4). More prolonged agonist stimulation also appears to allow the FFA4 receptors to interact with late endosomes (interaction with Rab9), slow recycling (interaction with Rab 11), and target to degradation (Rab7). Phorbol myristate acetate, triggered a rapid association with early endosomes (Rab5), slow recycling to the plasma membrane (Rab11), and some receptor degradation (Rab7). Insulin-induced FFA4 receptor internalization appears to be associated with interaction with early endosomes (Rab5) and late endosomes (Rab9) and fast and slow recycling to the plasma membrane (Rab4, Rab11). Additionally, we observed that agonist- and PMA-induced FFA4 internalization was markedly reduced by paroxetine, which suggests a possible role of G protein-coupled receptor kinase 2.


Asunto(s)
Ácidos Docosahexaenoicos/metabolismo , Insulina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Acetato de Tetradecanoilforbol/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Ácidos Docosahexaenoicos/farmacología , Células HEK293 , Humanos , Insulina/farmacología , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Isoformas de Proteínas/metabolismo , Acetato de Tetradecanoilforbol/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...