Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Nat Commun ; 15(1): 1604, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383534

RESUMEN

Hematopoietic stem cells (HSCs) develop from the hemogenic endothelium (HE) in the aorta- gonads-and mesonephros (AGM) region and reside within Intra-aortic hematopoietic clusters (IAHC) along with hematopoietic progenitors (HPC). The signalling mechanisms that distinguish HSCs from HPCs are unknown. Notch signaling is essential for arterial specification, IAHC formation and HSC activity, but current studies on how Notch segregates these different fates are inconsistent. We now demonstrate that Notch activity is highest in a subset of, GFI1 + , HSC-primed HE cells, and is gradually lost with HSC maturation. We uncover that the HSC phenotype is maintained due to increasing levels of NOTCH1 and JAG1 interactions on the surface of the same cell (cis) that renders the NOTCH1 receptor from being activated. Forced activation of the NOTCH1 receptor in IAHC activates a hematopoietic differentiation program. Our results indicate that NOTCH1-JAG1 cis-inhibition preserves the HSC phenotype in the hematopoietic clusters of the embryonic aorta.


Asunto(s)
Células Madre Hematopoyéticas , Receptor Notch1 , Receptor Notch1/genética , Receptor Notch1/metabolismo , Células Madre Hematopoyéticas/metabolismo , Diferenciación Celular/genética , Aorta/metabolismo , Arterias/metabolismo , Mesonefro , Gónadas/metabolismo
2.
Front Bioeng Biotechnol ; 11: 1203387, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37362215

RESUMEN

Introduction: Influenza A virus (IAV)-induced acute lung injury (ALI) is characterized by pronounced proinflammatory activation and respiratory lung dysfunction. In this study, we performed deep immune profiling on airway and circulating immune cells to examine the effect of immunomodulation and therapeutic outcomes of mesenchymal stem cells (MSCs) therapy in mice with IAV-induced ALI. Methods: Animals were inoculated intranasally with H1N1 IAV, followed by intravenous administration of vehicle, or human clinical-grade, bone marrow-derived MSCs 24-h later, and monitored for six days to evaluate the survival. In another set of animals, bronchoalveolar lavage (BAL) fluid and whole blood were collected three days after infection for flow or mass cytometry (CyTOF) immune profiling analysis. Results: Immune cell population and phenotypic shifts in blood were mapped by CyTOF. Increases were observed in granulocytes and myeloid-derived cells in blood from vehicle-treated animals. While MSC treatment accentuated changes in these populations, naïve B, antibody-secreting B cells, and T cells were decreased in MSC-treated animals at day 3. Compared to sham animals, IAV infection induced a significant 5.5-fold increase in BAL total cell counts, including CD4+ and CD8+ T cells, CD19+ B cells, CD11b + Ly6G + neutrophils, and CD11b + Ly6C + monocytes. MSC treatment significantly decreased BAL total cell counts in IAV-infected mice, specifically the number of infiltrating CD4+ T cells and CD11b + Ly6G + neutrophils. In contrast, there were increases in CD8+ T cells, B cells, and monocytes in the alveolar space in MSC-treated animals. Phenotypic immune cell profiling of blood and BAL revealed a significantly higher proportion of the monocyte population with the M2 phenotype (CD206) in MSC-treated animals; however, this failed to confer protective effects in the survival of infected mice or reduce viral titer in the lung. Further investigation revealed that MSCs were susceptible to IAV infection, leading to increased cell death and potentially affecting their efficacy. Conclusion: These findings provided in vivo evidence that MSCs promote the selective recruitment of immune cells to the site of infection during IAV infection, with reductions in proinflammatory phenotypes. However, MSCs offered no survival benefit in IAV-infected animals, possibly due to MSCs' H1N1 IAV susceptibility and subsequent cell death.

3.
EMBO J ; 41(15): e111759, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35781819

RESUMEN

Analysis of functional deterioration of the blood system during ageing has been largely confined to the mouse and human system. In this issue, Emmrich et al (2022) report the first comprehensive characterisation of the haematopoietic system of the naked mole-rat (NMR), an exceptionally long-lived rodent, highlighting its unique features and uncovering potential strategies to sustain haematopoiesis during an extended lifetime.


Asunto(s)
Envejecimiento , Ratas Topo , Animales , Humanos , Longevidad , Ratones
4.
Cell Stem Cell ; 29(8): 1273-1284.e8, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35858618

RESUMEN

Hematopoietic stem cells (HSCs) mediate regeneration of the hematopoietic system following injury, such as following infection or inflammation. These challenges impair HSC function, but whether this functional impairment extends beyond the duration of inflammatory exposure is unknown. Unexpectedly, we observed an irreversible depletion of functional HSCs following challenge with inflammation or bacterial infection, with no evidence of any recovery up to 1 year afterward. HSCs from challenged mice demonstrated multiple cellular and molecular features of accelerated aging and developed clinically relevant blood and bone marrow phenotypes not normally observed in aged laboratory mice but commonly seen in elderly humans. In vivo HSC self-renewal divisions were absent or extremely rare during both challenge and recovery periods. The progressive, irreversible attrition of HSC function demonstrates that temporally discrete inflammatory events elicit a cumulative inhibitory effect on HSCs. This work positions early/mid-life inflammation as a mediator of lifelong defects in tissue maintenance and regeneration.


Asunto(s)
Hematopoyesis , Células Madre Hematopoyéticas , Anciano , Envejecimiento , Animales , Médula Ósea , Humanos , Inflamación , Ratones
5.
STAR Protoc ; 3(3): 101483, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-35769923

RESUMEN

Quantitative 3D imaging of organ-wide cellular and subcellular components is central for revealing and understanding complex interactions between stem cells and their microenvironment. Here, we present a gentle but fast whole-mount immunofluorescence staining protocol for 3D confocal microscopy (iFAST3D) that preserves the 3D structure of the entire tissue and that of subcellular structures with high fidelity. The iFAST3D protocol enables reproducible and high-resolution 3D imaging of stem cells and various niche components for many mouse organs and tissues. For complete details on the use and execution of this protocol, please refer to Saçma et al. (2019).


Asunto(s)
Imagenología Tridimensional , Células Madre , Animales , Imagenología Tridimensional/métodos , Ratones , Microscopía Confocal/métodos , Coloración y Etiquetado
6.
iScience ; 25(5): 104188, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35402859

RESUMEN

Mesenchymal stem cells (MSCs) are being studied for the treatment of COVID-19-associated critical illness, due to their immunomodulatory properties. Here, we hypothesized that viral mimic-priming improves MSCs' abilities to rebalance the dysregulated immune responses in COVID-19. Transcriptome analysis of poly(I:C)-primed MSCs (pIC-MSCs) showed upregulation of pathways in antiviral and immunomodulatory responses. Together with increased expression of antiviral proteins such as MX1, IFITM3, and OAS1, these changes translated to greater effector functions in regulating monocytes and granulocytes while further enhancing MSCs' ability to block SARS-CoV-2 pseudovirus entry into epithelial cells. Most importantly, the addition of pIC-MSCs to COVID-19 patient whole blood significantly reduced inflammatory neutrophils and increased M2 monocytes while enhancing their phagocytic effector function. We reveal for the first time that MSCs can be primed by Toll-like receptor 3 agonist to improve their ability to rebalance the dysregulated immune responses seen in severe SARS-CoV-2 infection.

7.
Cardiovasc Toxicol ; 22(6): 558-578, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35429258

RESUMEN

Obesity, ethanol, and contaminants are known risk factors of cardiovascular and metabolic diseases (CMD). However, their interplay on clinical profiles of these diseases remains unclear, and thus were investigated in this study. Male lean or obese JCR rats were given water or 10% ethanol and orally treated with or without a contaminant mixture (CM) dissolved in corn oil and loaded on two cookies at 0, 1.6, or 16 mg/kg BW/day dose levels for 4 weeks. The CM consisted 22 environmental contaminants found in human blood or serum of Northern populations. Over 60 parameters related to CMD were examined. The results revealed that obesity in JCR rats resembles the clinical profiles of non-alcoholic fatty liver disease in humans. Obesity was also associated with increased serum and organ retention of mercury, one of the chemical components of CM. Exposure to ethanol lightened hyperlipidemia, increased liver retention of mercury, and increased risk for hypertension in the obese rats. CM lessened hyperlipidemia and hyperenzymemia, worsened systemic inflammation and increased the risk for hypertension in the obese rats. CM markedly increased serum ethanol levels with or without ethanol exposure. Tissue total mercury contents significantly correlated with clinical parameters with altered profiles by both ethanol and obesity. These results suggest that obese individuals may be more prone to contaminant accumulation. Ethanol and CM exposure can alter clinical profiles associated with obesity, which may lead to misdiagnosis of CMD associated with obesity. CM can alter endogenous production and/or metabolism of ethanol, further complicating disease progression, diagnosis, and treatment.


Asunto(s)
Hipertensión , Mercurio , Enfermedades Metabólicas , Animales , Etanol/metabolismo , Etanol/toxicidad , Masculino , Obesidad/complicaciones , Obesidad/diagnóstico , Ratas
8.
Haematologica ; 107(2): 393-402, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33440922

RESUMEN

In this study, we characterize age-related phenotypes of human hematopoietic stem cells (HSC). We report increased frequencies of HSC, hematopoietic progenitor cells and lineage negative cells in the elderly but a decreased frequency of multi-lymphoid progenitors. Aged human HSC further exhibited a delay in initiating division ex vivo though without changes in their division kinetics. The activity of the small RhoGTPase Cdc42 was elevated in aged human hematopoietic cells and we identified a positive correlation between Cdc42 activity and the frequency of HSC upon aging. The frequency of human HSC polar for polarity proteins was, similar to the mouse, decreased upon aging, while inhibition of Cdc42 activity via the specific pharmacological inhibitor of Cdc42 activity, CASIN, resulted in re-polarization of aged human HSC with respect to Cdc42. Elevated activity of Cdc42 in aged HSC thus contributed to age-related changes in HSC. Xenotransplant, using NBSGW mice as recipients, showed elevated chimerism in recipients of aged compared to young HSC. Aged HSC treated with CASIN ex vivo displayed an engraftment profile similar to recipients of young HSC. Taken together, our work reveals strong evidence for a role of elevated Cdc42 activity in driving aging of human HSC, and similar to mice, this presents a likely possibility for attenuation of aging in human HSC.


Asunto(s)
Envejecimiento , Células Madre Hematopoyéticas , Anciano , Animales , Células Madre Hematopoyéticas/metabolismo , Humanos , Ratones
9.
EMBO Rep ; 22(12): e52931, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34661963

RESUMEN

Aging of hematopoietic stem cells (HSCs) is caused by the elevated activity of the small RhoGTPase Cdc42 and an apolar distribution of proteins. Mechanisms by which Cdc42 activity controls polarity of HSCs are not known. Binder of RhoGTPases proteins (Borgs) are known effector proteins of Cdc42 that are able to regulate the cytoskeletal Septin network. Here, we show that Cdc42 interacts with Borg4, which in turn interacts with Septin7 to regulate the polar distribution of Cdc42, Borg4, and Septin7 within HSCs. Genetic deletion of either Borg4 or Septin7 results in a reduced frequency of HSCs polar for Cdc42 or Borg4 or Septin7, a reduced engraftment potential and decreased lymphoid-primed multipotent progenitor (LMPP) frequency in the bone marrow. Taken together, our data identify a Cdc42-Borg4-Septin7 axis essential for the maintenance of polarity within HSCs and for HSC function and provide a rationale for further investigating the role of Borgs and Septins in the regulation of compartmentalization within stem cells.


Asunto(s)
Proteínas del Citoesqueleto , Células Madre Hematopoyéticas , Septinas , Proteínas de Unión al GTP rho , Células Madre Hematopoyéticas/metabolismo , Septinas/genética , Septinas/metabolismo , Transducción de Señal
10.
J Clin Med ; 10(11)2021 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-34070780

RESUMEN

(1) Background: Reconditioning of the paraspinal lumbar extensor muscles by isolated lumbar extension resistance exercises (ILEX) has shown good clinical results for patients with chronic unspecific low back pain. However, the clinical value and safety for patients with specific spine pathologies is unclear. In this study, clinical outcome and influencing factors were retrospectively analyzed for patients with lumbar disk herniation (LDH) and radiculopathy. (2) Methods: 189 consecutive patients (123 men and 66 women; mean age, 36 years) with clinically diagnosed LDH and relative indications for surgery started a 9-week rehabilitation program (2x/week) including ILEX in limited range of motion (ROM) adjusted to patients' symptoms. Patients diagnosed with advanced levels of spine degeneration were excluded. Pain/radiculopathy (PR), influence on mental health (IOMH), satisfaction rates were measured via Numeric Rating Scales (NRS, 0-10), and overall clinical outcome was stated in % (100% = full recovery). Isometric extension strength was tested before and after the program. (3) Results: 168 patients (88.9%) completed the program. For 162 out of 168 patients (96.4%) there was a significant reduction of clinical symptoms, whereas 6 patients reported no changes in symptoms. Scores (mean) for symptom intensity decreased from 4.2 (±1.5) to 1.9 (±1.5) (p < 0.001), the impact on mental health decreased from 5.9 (±2.3) to 2.4 (±2.0) (p < 0.001). There was a (weak) correlation between lower scores for PR and IOMH before the study and better clinical outcomes; PR also weakly correlated with satisfaction. Other factors such as age, strength increase, level/location and number of LDH did not have a significant impact on the clinical results. (4) Conclusion: The results indicate that ILEX in limited ROM can be an effective treatment for the majority of patients with LDH. For patients with high pain levels, the results are less consistent, and surgery may be considered.

11.
Stem Cell Reports ; 16(4): 708-716, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33798450

RESUMEN

During X chromosome inactivation (XCI), the inactive X chromosome (Xi) is recruited to the nuclear lamina at the nuclear periphery. Beside X chromosome reactivation resulting in a highly penetrant aging-like hematopoietic malignancy, little is known about XCI in aged hematopoietic stem cells (HSCs). Here, we demonstrate that LaminA/C defines a distinct repressive nuclear compartment for XCI in young HSCs, and its reduction in aged HSCs correlates with an impairment in the overall control of XCI. Integrated omics analyses reveal higher variation in gene expression, global hypomethylation, and significantly increased chromatin accessibility on the X chromosome (Chr X) in aged HSCs. In summary, our data support the role of LaminA/C in the establishment of a special repressive compartment for XCI in HSCs, which is impaired upon aging.


Asunto(s)
Senescencia Celular/genética , Células Madre Hematopoyéticas/metabolismo , Inactivación del Cromosoma X/genética , Animales , Cromatina/metabolismo , Secuenciación de Inmunoprecipitación de Cromatina , Humanos , Lamina Tipo A/metabolismo , Ratones Endogámicos C57BL , Transposasas/metabolismo , Cromosoma X/genética
12.
Stem Cells ; 39(8): 1101-1106, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33847429

RESUMEN

Aging-associated leukemia and aging-associated immune remodeling are in part caused by aging of hematopoietic stem cells (HSCs). An increase in the activity of the small RhoGTPase cell division control protein 42 (Cdc42) within HSCs causes aging of HSCs. Old HSCs, treated ex vivo with a specific inhibitor of Cdc42 activity termed CASIN, stay rejuvenated upon transplantation into young recipients. We determined in this study the influence of an aged niche on the function of ex vivo rejuvenated old HSCs, as the relative contribution of HSCs intrinsic mechanisms vs extrinsic mechanisms (niche) for aging of HSCs still remain unknown. Our results show that an aged niche restrains the function of ex vivo rejuvenated HSCs, which is at least in part linked to a low level of the cytokine osteopontin found in aged niches. The data imply that sustainable rejuvenation of the function of aged HSCs in vivo will need to address the influence of an aged niche on rejuvenated HSCs.


Asunto(s)
Médula Ósea , Células Madre Hematopoyéticas , Células de la Médula Ósea , Células Madre Hematopoyéticas/metabolismo , Rejuvenecimiento , Nicho de Células Madre
13.
J Crit Care ; 64: 120-124, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33872918

RESUMEN

The therapeutic potential of IgM-enriched immunoglobulin preparations (IgGAM) in sepsis remains a field of debate. The use of polyclonal immunoglobulins as adjuvant therapy (Esen & Tugrul, 2009; Kaukonen et al., 2014; Molnár et al., 2013; Taccone et al., 2009) has been shown to improve clinical outcomes in terms of mortality. This study analyze the impact of IgM-enriched IgG (IgGM) as additional immunomodulation. Patients and methods: This is a retrospective registry of 1196 patients with severe sepsis and septic shock from nine Intensive Care Units in Colombia, from routine clinical practice; 220 patients treated with IgGAM were registered. Fully matched comparators for severity and type of infection selected among patients non-treated with IgGAM. Mortality after 28 days was 30.5% among IgGAM-treated patients and 40.5% among matched comparators. Results: Multivariate Cox regression analysis showed IgGAM treatment to be the only variable protective from death after 28 days (hazard ratio 0.62; 0.45-0.86; p: 0.004). Results reinforce the importance of IgGAM treatment for favorable outcome after septic shock and are in line with recent published meta-analyses. This study showed that treatment with IgGM in patients with sepsis was an independent modulator of the 28-day associated with a lower mortality.


Asunto(s)
Sepsis , Choque Séptico , Humanos , Inmunoglobulina M , Unidades de Cuidados Intensivos , Estudios Retrospectivos , Sepsis/tratamiento farmacológico
14.
Stem Cell Res Ther ; 12(1): 184, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33726829

RESUMEN

BACKGROUND: Acute lung injury (ALI) and in its severe form, acute respiratory distress syndrome (ARDS), results in increased pulmonary vascular inflammation and permeability and is a major cause of mortality in many critically ill patients. Although cell-based therapies have shown promise in experimental ALI, strategies are needed to enhance the potency of mesenchymal stem cells (MSCs) to develop more effective treatments. Genetic modification of MSCs has been demonstrated to significantly improve the therapeutic benefits of these cells; however, the optimal vector for gene transfer is not clear. Given the acute nature of ARDS, transient transfection is desirable to avoid off-target effects of long-term transgene expression, as well as the potential adverse consequences of genomic integration. METHODS: Here, we explored whether a minicircle DNA (MC) vector containing human angiopoietin 1 (MC-ANGPT1) can provide a more effective platform for gene-enhanced MSC therapy of ALI/ARDS. RESULTS: At 24 h after transfection, nuclear-targeted electroporation using an MC-ANGPT1 vector resulted in a 3.7-fold greater increase in human ANGPT1 protein in MSC conditioned media compared to the use of a plasmid ANGPT1 (pANGPT1) vector (2048 ± 567 pg/mL vs. 552.1 ± 33.5 pg/mL). In the lipopolysaccharide (LPS)-induced ALI model, administration of pANGPT1 transfected MSCs significantly reduced bronchoalveolar lavage (BAL) neutrophil counts by 57%, while MC-ANGPT1 transfected MSCs reduced it by 71% (p < 0.001) by Holm-Sidak's multiple comparison test. Moreover, compared to pANGPT1, the MC-ANGPT1 transfected MSCs significantly reduced pulmonary inflammation, as observed in decreased levels of proinflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ), interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), and macrophage inflammatory protein-2 (MIP-2). pANGPT1-transfected MSCs significantly reduced BAL albumin levels by 71%, while MC-ANGPT1-transfected MSCs reduced it by 85%. CONCLUSIONS: Overall, using a minicircle vector, we demonstrated an efficient and sustained expression of the ANGPT1 transgene in MSCs and enhanced the therapeutic effect on the ALI model compared to plasmid. These results support the potential benefits of MC-ANGPT1 gene enhancement of MSC therapy to treat ARDS.


Asunto(s)
Lesión Pulmonar Aguda , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Lesión Pulmonar Aguda/genética , Lesión Pulmonar Aguda/terapia , Humanos , Lipopolisacáridos , Pulmón , Ratones , Transgenes
15.
Aging (Albany NY) ; 13(4): 4778-4793, 2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33629967

RESUMEN

Normal hair growth occurs in cycles, comprising growth (anagen), cessation (catagen) and rest (telogen). Upon aging, the initiation of anagen is significantly delayed, which results in impaired hair regeneration. Hair regeneration is driven by hair follicle stem cells (HFSCs). We show here that aged HFSCs present with a decrease in canonical Wnt signaling and a shift towards non-canonical Wnt5a driven signaling which antagonizes canonical Wnt signaling. Elevated expression of Wnt5a in HFSCs upon aging results in elevated activity of the small RhoGTPase Cdc42 as well as a change in the spatial distribution of Cdc42 within HFSCs. Treatment of aged HFSC with a specific pharmacological inhibitor of Cdc42 activity termed CASIN to suppress the aging-associated elevated activity of Cdc42 restored canonical Wnt signaling in aged HFSCs. Treatment of aged mice in vivo with CASIN induced anagen onset and increased the percentage of anagen skin areas. Aging-associated functional deficits of HFSCs are at least in part intrinsic to HFSCs and can be restored by rational pharmacological approaches.


Asunto(s)
Folículo Piloso/crecimiento & desarrollo , Rejuvenecimiento/fisiología , Células Madre/metabolismo , Vía de Señalización Wnt , Proteína Wnt-5a/genética , Animales , Senescencia Celular/fisiología , Ratones
16.
Aging Cell ; 19(9): e13208, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32755011

RESUMEN

Cdc42 is a small RhoGTPase regulating multiple functions in eukaryotic cells. The activity of Cdc42 is significantly elevated in several tissues of aged mice, while the Cdc42 gain-of-activity mouse model presents with a premature aging-like phenotype and with decreased lifespan. These data suggest a causal connection between elevated activity of Cdc42, aging, and reduced lifespan. Here, we demonstrate that systemic treatment of aged (75-week-old) female C57BL/6 mice with a Cdc42 activity-specific inhibitor (CASIN) for 4 consecutive days significantly extends average and maximum lifespan. Moreover, aged CASIN-treated animals displayed a youthful level of the aging-associated cytokines IL-1ß, IL-1α, and INFγ in serum and a significantly younger epigenetic clock as based on DNA methylation levels in blood cells. Overall, our data show that systemic administration of CASIN to reduce Cdc42 activity in aged mice extends murine lifespan.


Asunto(s)
Citocinas/metabolismo , Proteína de Unión al GTP cdc42/genética , Envejecimiento , Animales , Proteínas de Drosophila , Femenino , Cadenas alfa de Integrinas , Longevidad , Ratones , Ratones Endogámicos C57BL
17.
Nat Commun ; 11(1): 821, 2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-32041953

RESUMEN

The diversity of the naïve T cell repertoire drives the replenishment potential and capacity of memory T cells to respond to immune challenges. Attrition of the immune system is associated with an increased prevalence of pathologies in aged individuals, but whether stem cell memory T lymphocytes (TSCM) contribute to such attrition is still unclear. Using single cells RNA sequencing and high-dimensional flow cytometry, we demonstrate that TSCM heterogeneity results from differential engagement of Wnt signaling. In humans, aging is associated with the coupled loss of Wnt/ß-catenin signature in CD4 TSCM and systemic increase in the levels of Dickkopf-related protein 1, a natural inhibitor of the Wnt/ß-catenin pathway. Functional assays support recent thymic emigrants as the precursors of CD4 TSCM. Our data thus hint that reversing TSCM defects by metabolic targeting of the Wnt/ß-catenin pathway may be a viable approach to restore and preserve immune homeostasis in the context of immunological history.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Células Precursoras de Linfocitos T/inmunología , Vía de Señalización Wnt/inmunología , Envejecimiento/inmunología , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Perfilación de la Expresión Génica , Infecciones por VIH/inmunología , Humanos , Memoria Inmunológica , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones , Timo/inmunología , Vía de Señalización Wnt/genética , beta Catenina/inmunología
18.
Haematologica ; 105(1): 22-37, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31806687

RESUMEN

Hematopoietic stem cells (HSC) sustain blood production over the entire life-span of an organism. It is of extreme importance that these cells maintain self-renewal and differentiation potential over time in order to preserve homeostasis of the hematopoietic system. Many of the intrinsic aspects of HSC are affected by the aging process resulting in a deterioration in their potential, independently of their microenvironment. Here we review recent findings characterizing most of the intrinsic aspects of aged HSC, ranging from phenotypic to molecular alterations. Historically, DNA damage was thought to be the main cause of HSC aging. However, over recent years, many new findings have defined an increasing number of biological processes that intrinsically change with age in HSC. Epigenetics and chromatin architecture, together with autophagy, proteostasis and metabolic changes, and how they are interconnected, are acquiring growing importance for understanding the intrinsic aging of stem cells. Given the increase in populations of older subjects worldwide, and considering that aging is the primary risk factor for most diseases, understanding HSC aging becomes particularly relevant also in the context of hematologic disorders, such as myelodysplastic syndromes and acute myeloid leukemia. Research on intrinsic mechanisms responsible for HSC aging is providing, and will continue to provide, new potential molecular targets to possibly ameliorate or delay aging of the hematopoietic system and consequently improve the outcome of hematologic disorders in the elderly. The niche-dependent contributions to hematopoietic aging are discussed in another review in this same issue of the Journal.


Asunto(s)
Senescencia Celular , Células Madre Hematopoyéticas , Anciano , Envejecimiento , Diferenciación Celular , Homeostasis , Humanos
19.
Nat Cell Biol ; 21(11): 1309-1320, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31685996

RESUMEN

With ageing, intrinsic haematopoietic stem cell (HSC) activity decreases, resulting in impaired tissue homeostasis, reduced engraftment following transplantation and increased susceptibility to diseases. However, whether ageing also affects the HSC niche, and thereby impairs its capacity to support HSC function, is still widely debated. Here, by using in-vivo long-term label-retention assays we demonstrate that aged label-retaining HSCs, which are, in old mice, the most quiescent HSC subpopulation with the highest regenerative capacity and cellular polarity, reside predominantly in perisinusoidal niches. Furthermore, we demonstrate that sinusoidal niches are uniquely preserved in shape, morphology and number on ageing. Finally, we show that myeloablative chemotherapy can selectively disrupt aged sinusoidal niches in the long term, which is linked to the lack of recovery of endothelial Jag2 at sinusoids. Overall, our data characterize the functional alterations of the aged HSC niche and unveil that perisinusoidal niches are uniquely preserved and thereby protect HSCs from ageing.


Asunto(s)
Envejecimiento/genética , Capilares/metabolismo , Células Madre Hematopoyéticas/metabolismo , Homeostasis/genética , Nicho de Células Madre/genética , Envejecimiento/metabolismo , Animales , Médula Ósea/efectos de los fármacos , Médula Ósea/metabolismo , Capilares/citología , Capilares/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , División Celular/efectos de los fármacos , Polaridad Celular/efectos de los fármacos , Rastreo Celular/métodos , Doxiciclina/farmacología , Fluorouracilo/farmacología , Regulación de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/efectos de los fármacos , Histonas/genética , Histonas/metabolismo , Homeostasis/efectos de los fármacos , Proteína Jagged-2/genética , Proteína Jagged-2/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Agonistas Mieloablativos/farmacología , Nicho de Células Madre/efectos de los fármacos
20.
PLoS One ; 14(7): e0219205, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31269062

RESUMEN

In the rat, oxytocin (OT) produces dose-dependent diuretic and natriuretic responses. Post-translational enzymatic conversion of the OT biosynthetic precursor forms both mature and C-terminally extended peptides. The plasma concentrations of these C-terminally extended peptides (OT-G; OT-GK and OT-GKR) are elevated in newborns and pregnant rats. Intravenous injection of OT-GKR to rats inhibits diuresis, whereas injection of amidated OT stimulates diuresis. Since OT and OT-GKR show different effects on the urine flow, we investigated whether OT-GKR modulates renal action by inhibition of the arginine-vasopressin (AVP) receptor V2 (V2R), the receptor involved in renal water reabsorption. Experiments were carried out in the 8-week-old Wistar rats receiving intravenous (iv) injections of vehicle, OT, OT-GKR or OT+OT-GKR combination. OT (10 µmol/kg) increased urine outflow by 40% (P<0.01) and sodium excretion by 47% (P<0.01). Treatment with OT-GKR (10 µmol/kg) decreased diuresis by 50% (P<0.001), decreased sodium excretion by 50% (P<0.05) and lowered potassium by 42% (P<0.05). OT antagonist (OTA) reduced diuresis and natriuresis exerted by OT, whereas the anti-diuretic effect of OT-GKR was unaffected by OTA. The treatment with V2R antagonist (V2A) in the presence and absence of OT induced diuresis, sodium and potassium outflow. V2A in the presence of OT-GKR only partially increased diuresis and natriuresis. Autoradiography and molecular docking analysis showed potent binding of OT-GKR to V2R. Finally, the release of cAMP from CHO cells overexpressing V2 receptor was induced by low concentration of AVP (EC50:4.2e-011), at higher concentrations of OT (EC50:3.2e-010) and by the highest concentrations of OT-GKR (EC50:1.1e-006). OT-GKR potentiated cAMP release when combined with AVP, but blocked cAMP release when combined with OT. These results suggest that OT-GKR by competing for the OT renal receptor (OTR) and binding to V2R in the kidney, induces anti-diuretic, anti-natriuretic, and anti-kaliuretic effects.


Asunto(s)
Diuresis , Natriuresis , Oxitocina/metabolismo , Animales , Autorradiografía , Unión Competitiva , Células CHO , Línea Celular , Cricetinae , Cricetulus , AMP Cíclico/metabolismo , Electrólitos/metabolismo , Humanos , Riñón/metabolismo , Simulación del Acoplamiento Molecular , Péptidos/metabolismo , Ratas , Ratas Wistar , Receptores de Vasopresinas/metabolismo , Micción , Vasopresinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...