Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 16(20): 9935-9943, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38690802

RESUMEN

Nano/micromotors outperform Brownian motion due to their self-propulsive capabilities and hold promise as carriers for drug delivery across biological barriers such as the extracellular matrix. This study employs poly(2-(diethylamino)ethyl methacrylate) polymer brushes to enhance the collagenase-loading capacity of silica particle-based motors with the aim to systematically investigate the impact of gelatine viscosity, motors' size, and morphology on their propulsion velocity. Notably, 500 nm and 1 µm motors achieve similar speeds as high as ∼15 µm s-1 in stiff gelatine-based hydrogels when triggered with calcium. Taken together, our findings highlight the potential of collagenase-based motors for navigating the extracellular matrix, positioning them as promising candidates for efficient drug delivery.


Asunto(s)
Colagenasas , Gelatina , Hidrogeles , Hidrogeles/química , Gelatina/química , Colagenasas/metabolismo , Colagenasas/química , Dióxido de Silicio/química , Viscosidad , Calcio/química , Calcio/metabolismo
2.
Cytokine ; 172: 156399, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37898012

RESUMEN

Lipoproteins are immunostimulatory bacterial components suggested to participate in inflammation-induced bone loss in periodontal disease through stimulation of osteoclast differentiation. Toll-like receptor 2 activation by Pam2CSK4 (PAM2), known to mimic bacterial lipoproteins, was previously shown to enhance periodontal bone resorption in mice. The anti-inflammatory cytokine interleukin-4 (IL-4) is a known inhibitor of RANKL-induced bone resorption in vitro. Here, we have investigated whether IL-4 could decrease PAM2-induced periodontal bone loss and osteoclastogenesis in vivo. In a model of periodontitis induced by gingival injections of PAM2 in mice, concomitant injections of IL-4 reduced bone loss. Histologically, IL-4 reduced the recruitment of inflammatory cells and the formation of TRAP+ osteoclasts stimulated by PAM2. Mouse bone marrow macrophages (BMMs) and neonatal calvarial osteoblasts were used to assess the effect of IL-4 on PAM2-induced osteoclastogenesis in vitro. In RANKL-primed BMMs stimulated by PAM2 Nfatc1, Ctsk, and Acp5 gene expression was up-regulated and resulted in robust formation of TRAP+ multinucleated osteoclasts, effects which were impaired by IL-4. These effects were mediated by impairment in PAM2-induced c-fos expression. In primary calvarial osteoblast cultures, IL-4 decreased PAM2-induced Tnfsf11 (encoding RANKL) mRNA and enhanced Tnfrsf11b (encoding OPG) expression. Our data demonstrate that the osteoprotective effect by IL-4 on lipoprotein-induced periodontal disease occurs through the inhibition of osteoclastogenesis by three mechanisms, one by acting directly on osteoclast progenitors, another by acting indirectly through decreasing the expression of osteoclast-regulating cytokines in osteoblasts and a third by decreasing inflammation.


Asunto(s)
Pérdida de Hueso Alveolar , Resorción Ósea , Periodontitis , Animales , Ratones , Interleucina-4/metabolismo , Osteoclastos/metabolismo , Resorción Ósea/metabolismo , Citocinas/metabolismo , Periodontitis/metabolismo , Pérdida de Hueso Alveolar/metabolismo , Inflamación/metabolismo , Ligando RANK/metabolismo , Diferenciación Celular
3.
J Inflamm Res ; 14: 4723-4741, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34566421

RESUMEN

BACKGROUND: Bone loss is often observed adjacent to inflammatory processes. The WNT signaling pathways have been implicated as novel regulators of both immune responses and bone metabolism. WNT16 is important for cortical bone mass by inhibiting osteoclast differentiation, and we have here investigated the regulation of WNT16 by several members of the pro-inflammatory gp130 cytokine family. METHODS: The expression and regulation of Wnt16 in primary murine cells were studied by qPCR, scRNAseq and in situ hybridization. Signaling pathways were studied by siRNA silencing. The importance of oncostatin M (OSM)-induced WNT16 expression for osteoclastogenesis was studied in cells from Wnt16-deficient and wild-type mice. RESULTS: We found that IL-6/sIL-6R and OSM induce the expression of Wnt16 in primary mouse calvarial osteoblasts, with OSM being the most robust stimulator. The induction of Wnt16 by OSM was dependent on gp130 and OSM receptor (OSMR), and downstream signaling by the SHC1/STAT3 pathway, but independent of ERK. Stimulation of the calvarial cells with OSM resulted in enhanced numbers of mature, oversized osteoclasts when cells were isolated from Wnt16 deficient mice compared to cells from wild-type mice. OSM did not affect Wnt16 mRNA expression in bone marrow cell cultures, explained by the finding that Wnt16 and Osmr are expressed in distinctly different cells in bone marrow, nor was osteoclast differentiation different in OSM-stimulated bone marrow cell cultures isolated from Wnt16-/- or wild-type mice. Furthermore, we found that Wnt16 expression is substantially lower in cells from bone marrow compared to calvarial osteoblasts. CONCLUSION: These findings demonstrate that OSM is a robust stimulator of Wnt16 mRNA in calvarial osteoblasts and that WNT16 acts as a negative feedback regulator of OSM-induced osteoclast formation in the calvarial bone cells, but not in the bone marrow.

4.
Front Immunol ; 10: 1164, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31191537

RESUMEN

Background and Purpose: The gp130 family of cytokines signals through receptors dimerizing with the gp130 subunit. Downstream signaling typically activates STAT3 but also SHP2/Ras/MAPK pathways. Oncostatin M (OSM) is a unique cytokine in this family since the receptor (OSMR) activates a non-redundant signaling pathway by recruitment of the adapter Shc1. We have studied the functional relevance of Shc1 for OSM-induced bone resorption. Experimental Approach: Osteoblasts were stimulated with OSM and STAT3 and Shc1 activations were studied using real-time PCR and Western blots. The role of STAT3 and Shc1 for OSM-induced RANKL expression and osteoclast formation was studied by silencing their mRNA expressions. Effects of OSM were compared to those of the closely related cytokine leukemia inhibitory factor (LIF). Key Results: OSM, but not LIF, induced the mRNA and protein expression of Shc1 and activated phosphorylation of Shc1 in the osteoblasts. Silencing of Shc1 decreased OSM-induced activation of STAT3 and RANKL expression. Silencing of STAT3 had no effect on activation of Shc1, but prevented the OSM-mediated increase of RANKL expression. Silencing of either Shc1 or STAT3 in osteoblasts decreased formation of osteoclasts in OSM-stimulated co-cultures of osteoblasts and macrophages. In agreement with these observations, OSM was a more potent and robust stimulator than LIF of RANKL formation and bone resorption in mouse calvariae and osteoclast formation in bone marrow cultures. Conclusions and Implications: Activation of the Shc1-dependent STAT3 signaling is crucial for OSM-induced osteoclast formation. Inhibition of Shc1 is a potential mechanism to specifically inhibit OSM-induced bone resorption.


Asunto(s)
Factor Inhibidor de Leucemia/farmacología , Oncostatina M/farmacología , Osteoclastos/efectos de los fármacos , Ligando RANK/genética , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/genética , Animales , Células Cultivadas , Técnicas de Cocultivo , Regulación de la Expresión Génica/efectos de los fármacos , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteoclastos/citología , Osteoclastos/metabolismo , Ligando RANK/metabolismo , Interferencia de ARN , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...