RESUMEN
Importance: In the neurotypical brain, regions develop in coordinated patterns, providing a fundamental scaffold for brain function and behavior. Whether altered patterns contribute to clinical profiles in neurodevelopmental conditions, including autism, remains unclear. Objectives: To examine if, in autism, brain regions develop differently in relation to each other and how these differences are associated with molecular/genomic mechanisms and symptomatology. Design, Setting, and Participants: This study was an analysis of one the largest deep-phenotyped, case-control, longitudinal (2 assessments separated by approximately 12-24 months) structural magnetic resonance imaging and cognitive-behavioral autism datasets (EU-AIMS Longitudinal European Autism Project [LEAP]; study dates, February 2014-November 2017) and an out-of-sample validation in the Brain Development Imaging Study (BrainMapASD) independent cohort. Analyses were performed during the 2022 to 2023 period. This multicenter study included autistic and neurotypical children, adolescents, and adults. Autistic participants were included if they had an existing autism diagnosis (DSM-IV/International Statistical Classification of Diseases and Related Health Problems, Tenth Revision or DSM-5 criteria). Autistic participants with co-occurring psychiatric conditions (except psychosis/bipolar disorder) and those taking regular medications were included. Exposures: Neuroanatomy of neurotypical and autistic participants. Main Outcomes and Measures: Intraindividual changes in surface area and cortical thickness over time, analyzed via surface-based morphometrics. Results: A total of 386 individuals in the LEAP cohort (6-31 years at first visit; 214 autistic individuals, mean [SD] age, 17.3 [5.4] years; 154 male [72.0%] and 172 neurotypical individuals, mean [SD] age, 16.35 [5.7] years; 108 male [62.8%]) and 146 individuals in the BrainMapASD cohort (11-18 years at first visit; 49 autistic individuals, mean [SD] age, 14.31 [2.4] years; 42 male [85.7%] and 97 neurotypical individuals, mean [SD] age, 14.10 [2.5] years; 58 male [59.8%]). Maturational between-group differences in cortical thickness and surface area were established that were mostly driven by sensorimotor regions (eg, across features, absolute loadings for early visual cortex ranged from 0.07 to 0.11, whereas absolute loadings for dorsolateral prefrontal cortex ranged from 0.005 to 0.06). Neurodevelopmental differences were transcriptomically enriched for genes expressed in several cell types and during various neurodevelopmental stages, and autism candidate genes (eg, downregulated genes in autism, including those regulating synaptic transmission; enrichment odds ratio =3.7; P =2.6 × -10). A more neurotypical, less autismlike maturational profile was associated with fewer social difficulties and more typical sensory processing (false discovery rate P <.05; Pearson r ≥0.17). Results were replicated in the independently collected BrainMapASD cohort. Conclusions and Relevance: Results of this case-control study suggest that the coordinated development of brain regions was altered in autism, involved a complex interplay of temporally sensitive molecular mechanisms, and may be associated with both lower-order (eg, sensory) and higher-order (eg, social) clinical features of autism. Thus, examining maturational patterns may provide an analytic framework to study the neurobiological origins of clinical profiles in neurodevelopmental/mental health conditions.
RESUMEN
Autism spectrum disorder ("autism") is a neurodevelopmental condition characterized by substantial behavioral and neuroanatomical heterogeneity. This poses significant challenges to understanding its neurobiological mechanisms and developing effective interventions. Identifying phenotypically more homogeneous subgroups and shifting the focus from average group differences to individuals is a promising approach to addressing heterogeneity. In the present study, we aimed to parse clinical and neuroanatomical heterogeneity in autism by combining clustering of clinical features with normative modeling based on neuroanatomical measures (cortical thickness [CT] and subcortical volume) within the Autism Brain Imaging Data Exchange data sets (N autism = 861, N nonautistic individuals [N NAI] = 886, age range = 5-64). First, model-based clustering was applied to autistic symptoms as measured by the Autism Diagnostic Observation Schedule to identify clinical subgroups of autism (N autism = 499). Next, we ran normative modeling on CT and subcortical parcellations (N autism = 690, N NAI = 744) and examined whether clinical subgrouping resulted in increased neurobiological homogeneity within the subgroups compared to the entire autism group by comparing their spatial overlap of neuroanatomical deviations. We further investigated whether the identified subgroups improved the accuracy of autism classification based on the neuroanatomical deviations using supervised machine learning with cross-validation. Results yielded two clinical subgroups primarily differing in restrictive and repetitive behaviors (RRBs). Both subgroups showed increased homogeneity in localized deviations with the high-RRB subgroup showing increased volume deviations in the cerebellum and the low-RRB subgroup showing decreased CT deviations predominantly in the postcentral gyrus and fusiform cortex. Nevertheless, substantial within-group heterogeneity remained highlighted by the lack of improvement of the classifier's performance when distinguishing between the subgroups and NAI. Future research should aim to further reduce heterogeneity incorporating additional neuroanatomical clustering in even larger samples. This will eventually pave the way for more tailored behavioral interventions and improving clinical outcomes. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Asunto(s)
Trastorno del Espectro Autista , Humanos , Masculino , Niño , Femenino , Trastorno del Espectro Autista/diagnóstico por imagen , Trastorno del Espectro Autista/patología , Trastorno del Espectro Autista/clasificación , Trastorno del Espectro Autista/diagnóstico , Trastorno del Espectro Autista/fisiopatología , Preescolar , Adulto , Adolescente , Adulto Joven , Persona de Mediana Edad , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Aprendizaje Automático Supervisado , Neuroimagen/métodosRESUMEN
BACKGROUND: Autism spectrum disorder has been linked to a variety of organizational and developmental deviations in the brain. One such organizational difference involves hemispheric lateralization, which may be localized to language-relevant regions of the brain or distributed more broadly. METHODS: In the present study, we estimated brain hemispheric lateralization in autism based on each participant's unique functional neuroanatomy rather than relying on group-averaged data. Additionally, we explored potential relationships between the lateralization of the language network and behavioral phenotypes including verbal ability, language delay, and autism symptom severity. We hypothesized that differences in hemispheric asymmetries in autism would be limited to the language network, with the alternative hypothesis of pervasive differences in lateralization. We tested this and other hypotheses by employing a cross-sectional dataset of 118 individuals (48 autistic, 70 neurotypical). Using resting-state fMRI, we generated individual network parcellations and estimated network asymmetries using a surface area-based approach. A series of multiple regressions were then used to compare network asymmetries for eight significantly lateralized networks between groups. RESULTS: We found significant group differences in lateralization for the left-lateralized Language (d = -0.89), right-lateralized Salience/Ventral Attention-A (d = 0.55), and right-lateralized Control-B (d = 0.51) networks, with the direction of these group differences indicating less asymmetry in autistic males. These differences were robust across different datasets from the same participants. Furthermore, we found that language delay stratified language lateralization, with the greatest group differences in language lateralization occurring between autistic males with language delay and neurotypical individuals. CONCLUSIONS: These findings evidence a complex pattern of functional lateralization differences in autism, extending beyond the Language network to the Salience/Ventral Attention-A and Control-B networks, yet not encompassing all networks, indicating a selective divergence rather than a pervasive one. Moreover, we observed an association between Language network lateralization and language delay in autistic males.
Asunto(s)
Encéfalo , Lateralidad Funcional , Imagen por Resonancia Magnética , Humanos , Masculino , Lateralidad Funcional/fisiología , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen , Adulto , Adulto Joven , Estudios Transversales , Adolescente , Trastorno del Espectro Autista/fisiopatología , Red Nerviosa/fisiopatología , Red Nerviosa/diagnóstico por imagen , Trastorno Autístico/fisiopatología , Niño , LenguajeRESUMEN
One organizing principle of the human brain is hemispheric specialization, or the dominance of a specific function or cognitive process in one hemisphere or the other. Previously, Wang et al. (2014) identified networks putatively associated with language and attention as being specialized to the left and right hemispheres, respectively; and a dual-specialization of the executive control network. However, it remains unknown which networks are specialized when specialization is examined within individuals using a higher resolution parcellation, as well as which connections are contributing the most to a given network's specialization. In the present study, we estimated network specialization across three datasets using the autonomy index and a novel method of deconstructing network specialization. After examining the reliability of these methods as implemented on an individual level, we addressed two hypotheses. First, we hypothesized that the most specialized networks would include those associated with language, visuospatial attention, and executive control. Second, we hypothesized that within-network contributions to specialization would follow a within-between network gradient or a specialization gradient. We found that the majority of networks exhibited greater within-hemisphere connectivity than between-hemisphere connectivity. Among the most specialized networks were networks associated with language, attention, and executive control. Additionally, we found that the greatest network contributions were within-network, followed by those from specialized networks.
RESUMEN
BACKGROUND: Autism spectrum disorder (henceforth autism) is a complex neurodevelopmental condition associated with differences in gray matter (GM) volume covariations, as reported in our previous study of the Longitudinal European Autism Project (LEAP) data. To make progress on the identification of potential neural markers and to validate the robustness of our previous findings, we aimed to replicate our results using data from the Enhancing Neuroimaging Genetics Through Meta-Analysis (ENIGMA) autism working group. METHODS: We studied 781 autistic and 927 non-autistic individuals (6-30 years, IQ ≥ 50), across 37 sites. Voxel-based morphometry was used to quantify GM volume as before. Subsequently, we used spatial maps of the two autism-related independent components (ICs) previously identified in the LEAP sample as templates for regression analyses to separately estimate the ENIGMA-participant loadings to each of these two ICs. Between-group differences in participants' loadings on each component were examined, and we additionally investigated the relation between participant loadings and autistic behaviors within the autism group. RESULTS: The two components of interest, previously identified in the LEAP dataset, showed significant between-group differences upon regressions into the ENIGMA cohort. The associated brain patterns were consistent with those found in the initial identification study. The first IC was primarily associated with increased volumes of bilateral insula, inferior frontal gyrus, orbitofrontal cortex, and caudate in the autism group relative to the control group (ß = 0.129, p = 0.013). The second IC was related to increased volumes of the bilateral amygdala, hippocampus, and parahippocampal gyrus in the autism group relative to non-autistic individuals (ß = 0.116, p = 0.024). However, when accounting for the site-by-group interaction effect, no significant main effect of the group can be identified (p > 0.590). We did not find significant univariate association between the brain measures and behavior in autism (p > 0.085). LIMITATIONS: The distributions of age, IQ, and sex between LEAP and ENIGMA are statistically different from each other. Owing to limited access to the behavioral data of the autism group, we were unable to further our understanding of the neural basis of behavioral dimensions of the sample. CONCLUSIONS: The current study is unable to fully replicate the autism-related brain patterns from LEAP in the ENIGMA cohort. The diverse group effects across ENIGMA sites demonstrate the challenges of generalizing the average findings of the GM covariation patterns to a large-scale cohort integrated retrospectively from multiple studies. Further analyses need to be conducted to gain additional insights into the generalizability of these two GM covariation patterns.
Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Humanos , Sustancia Gris/diagnóstico por imagen , Trastorno Autístico/diagnóstico por imagen , Trastorno del Espectro Autista/diagnóstico por imagen , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagenRESUMEN
BACKGROUND: Autism is a heterogeneous neurodevelopmental condition accompanied by differences in brain connectivity. Structural connectivity in autism has mainly been investigated within the white matter. However, many genetic variants associated with autism highlight genes related to synaptogenesis and axonal guidance, thus also implicating differences in intrinsic (i.e., gray matter) connections in autism. Intrinsic connections may be assessed in vivo via so-called intrinsic global and local wiring costs. METHODS: Here, we examined intrinsic global and local wiring costs in the brain of 359 individuals with autism and 279 healthy control participants ages 6 to 30 years from the EU-AIMS LEAP (Longitudinal European Autism Project). FreeSurfer was used to derive surface mesh representations to compute the estimated length of connections required to wire the brain within the gray matter. Vertexwise between-group differences were assessed using a general linear model. A gene expression decoding analysis based on the Allen Human Brain Atlas was performed to link neuroanatomical differences to putative underpinnings. RESULTS: Group differences in global and local wiring costs were predominantly observed in medial and lateral prefrontal brain regions, in inferior temporal regions, and at the left temporoparietal junction. The resulting neuroanatomical patterns were enriched for genes that had been previously implicated in the etiology of autism at genetic and transcriptomic levels. CONCLUSIONS: Based on intrinsic gray matter connectivity, the current study investigated the complex neuroanatomy of autism and linked between-group differences to putative genomic and/or molecular mechanisms to parse the heterogeneity of autism and provide targets for future subgrouping approaches.
Asunto(s)
Trastorno del Espectro Autista , Sustancia Blanca , Humanos , Sustancia Gris/diagnóstico por imagen , Trastorno del Espectro Autista/diagnóstico por imagen , Trastorno del Espectro Autista/genética , Imagen por Resonancia Magnética/métodos , Corteza Cerebral , Encéfalo/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , GenómicaRESUMEN
The two hemispheres of the human brain are functionally asymmetric. At the network level, the language network exhibits left-hemisphere lateralization. While this asymmetry is widely replicated, the extent to which other functional networks demonstrate lateralization remains a subject of Investigation. Additionally, it is unknown how the lateralization of one functional network may affect the lateralization of other networks within individuals. We quantified lateralization for each of 17 networks by computing the relative surface area on the left and right cerebral hemispheres. After examining the ecological, convergent, and external validity and test-retest reliability of this surface area-based measure of lateralization, we addressed two hypotheses across multiple datasets (Human Connectome Project = 553, Human Connectome Project-Development = 343, Natural Scenes Dataset = 8). First, we hypothesized that networks associated with language, visuospatial attention, and executive control would show the greatest lateralization. Second, we hypothesized that relationships between lateralized networks would follow a dependent relationship such that greater left-lateralization of a network would be associated with greater right-lateralization of a different network within individuals, and that this pattern would be systematic across individuals. A language network was among the three networks identified as being significantly left-lateralized, and attention and executive control networks were among the five networks identified as being significantly right-lateralized. Next, correlation matrices, an exploratory factor analysis, and confirmatory factor analyses were used to test the second hypothesis and examine the organization of lateralized networks. We found general support for a dependent relationship between highly left- and right-lateralized networks, meaning that across subjects, greater left lateralization of a given network (such as a language network) was linked to greater right lateralization of another network (such as a ventral attention/salience network) and vice versa. These results further our understanding of brain organization at the macro-scale network level in individuals, carrying specific relevance for neurodevelopmental conditions characterized by disruptions in lateralization such as autism and schizophrenia.
RESUMEN
BACKGROUND: Autism spectrum disorders (ASD) are neurodevelopmental conditions accompanied by differences in brain development. Neuroanatomical differences in autism are variable across individuals and likely underpin distinct clinical phenotypes. To parse heterogeneity, it is essential to establish how the neurobiology of ASD is modulated by differences associated with co-occurring conditions, such as attention-deficit/hyperactivity disorder (ADHD). This study aimed to (1) investigate between-group differences in autistic individuals with and without co-occurring ADHD, and to (2) link these variances to putative genomic underpinnings. METHODS: We examined differences in cortical thickness (CT) and surface area (SA) and their genomic associations in a sample of 533 individuals from the Longitudinal European Autism Project. Using a general linear model including main effects of autism and ADHD, and an ASD-by-ADHD interaction, we examined to which degree ADHD modulates the autism-related neuroanatomy. Further, leveraging the spatial gene expression data of the Allen Human Brain Atlas, we identified genes whose spatial expression patterns resemble our neuroimaging findings. RESULTS: In addition to significant main effects for ASD and ADHD in fronto-temporal, limbic, and occipital regions, we observed a significant ASD-by-ADHD interaction in the left precentral gyrus and the right frontal gyrus for measures of CT and SA, respectively. Moreover, individuals with ASD + ADHD differed in CT to those without. Both main effects and the interaction were enriched for ASD-but not for ADHD-related genes. LIMITATIONS: Although we employed a multicenter design to overcome single-site recruitment limitations, our sample size of N = 25 individuals in the ADHD only group is relatively small compared to the other subgroups, which limits the generalizability of the results. Also, we assigned subjects into ADHD positive groupings according to the DSM-5 rating scale. While this is sufficient for obtaining a research diagnosis of ADHD, our approach did not take into account for how long the symptoms have been present, which is typically considered when assessing ADHD in the clinical setting. CONCLUSION: Thus, our findings suggest that the neuroanatomy of ASD is significantly modulated by ADHD, and that autistic individuals with co-occurring ADHD may have specific neuroanatomical underpinnings potentially mediated by atypical gene expression.
Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno del Espectro Autista , Trastorno Autístico , Humanos , Trastorno Autístico/diagnóstico por imagen , Trastorno Autístico/genética , Trastorno Autístico/complicaciones , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Trastorno por Déficit de Atención con Hiperactividad/genética , Trastorno por Déficit de Atención con Hiperactividad/complicaciones , Neuroanatomía , Encéfalo/diagnóstico por imagen , Trastorno del Espectro Autista/diagnóstico por imagen , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/complicaciones , GenómicaRESUMEN
Autism presents with significant phenotypic and neuroanatomical heterogeneity, and neuroimaging studies of the thalamus, globus pallidus and striatum in autism have produced inconsistent and contradictory results. These structures are critical mediators of functions known to be atypical in autism, including sensory gating and motor function. We examined both volumetric and fine-grained localized shape differences in autism using a large (n=3145, 1045-1318 after strict quality control), cross-sectional dataset of T1-weighted structural MRI scans from 32 sites, including both males and females (assigned-at-birth). We investigated three potentially important sources of neuroanatomical heterogeneity: sex, age, and intelligence quotient (IQ), using a meta-analytic technique after strict quality control to minimize non-biological sources of variation. We observed no volumetric differences in the thalamus, globus pallidus, or striatum in autism. Rather, we identified a variety of localized shape differences in all three structures. Including age, but not sex or IQ, in the statistical model improved the fit for both the pallidum and striatum, but not for the thalamus. Age-centered shape analysis indicated a variety of age-dependent regional differences. Overall, our findings help confirm that the neurodevelopment of the striatum, globus pallidus and thalamus are atypical in autism, in a subtle location-dependent manner that is not reflected in overall structure volumes, and that is highly non-uniform across the lifespan.
RESUMEN
Autism is a neurodevelopmental condition involving atypical sensory-perceptual functions together with language and socio-cognitive deficits. Previous work has reported subtle alterations in the asymmetry of brain structure and reduced laterality of functional activation in individuals with autism relative to non-autistic individuals (NAI). However, whether functional asymmetries show altered intrinsic systematic organization in autism remains unclear. Here, we examined inter- and intra-hemispheric asymmetry of intrinsic functional gradients capturing connectome organization along three axes, stretching between sensory-default, somatomotor-visual, and default-multiple demand networks, to study system-level hemispheric imbalances in autism. We observed decreased leftward functional asymmetry of language network organization in individuals with autism, relative to NAI. Whereas language network asymmetry varied across age groups in NAI, this was not the case in autism, suggesting atypical functional laterality in autism may result from altered developmental trajectories. Finally, we observed that intra- but not inter-hemispheric features were predictive of the severity of autistic traits. Our findings illustrate how regional and patterned functional lateralization is altered in autism at the system level. Such differences may be rooted in atypical developmental trajectories of functional organization asymmetry in autism.
Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Conectoma , Humanos , Imagen por Resonancia Magnética , Encéfalo , Lateralidad Funcional/fisiología , Mapeo EncefálicoRESUMEN
Environmental adversities constitute potent risk factors for psychiatric disorders. Evidence suggests the brain adapts to adversity, possibly in an adversity-type and region-specific manner. However, the long-term effects of adversity on brain structure and the association of individual neurobiological heterogeneity with behavior have yet to be elucidated. Here we estimated normative models of structural brain development based on a lifespan adversity profile in a longitudinal at-risk cohort aged 25 years (n = 169). This revealed widespread morphometric changes in the brain, with partially adversity-specific features. This pattern was replicated at the age of 33 years (n = 114) and in an independent sample at 22 years (n = 115). At the individual level, greater volume contractions relative to the model were predictive of future anxiety. We show a stable neurobiological signature of adversity that persists into adulthood and emphasize the importance of considering individual-level rather than group-level predictions to explain emerging psychopathology.
Asunto(s)
Longevidad , Trastornos Mentales , Adulto , Humanos , Encéfalo , Ansiedad , NeurobiologíaRESUMEN
Neuroimaging analyses of brain structure and function in autism have typically been conducted in isolation, missing the sensitivity gains of linking data across modalities. Here we focus on the integration of structural and functional organisational properties of brain regions. We aim to identify novel brain-organisation phenotypes of autism. We utilised multimodal MRI (T1-, diffusion-weighted and resting state functional), behavioural and clinical data from the EU AIMS Longitudinal European Autism Project (LEAP) from autistic (n = 206) and non-autistic (n = 196) participants. Of these, 97 had data from 2 timepoints resulting in a total scan number of 466. Grey matter density maps, probabilistic tractography connectivity matrices and connectopic maps were extracted from respective MRI modalities and were then integrated with Linked Independent Component Analysis. Linear mixed-effects models were used to evaluate the relationship between components and group while accounting for covariates and non-independence of participants with longitudinal data. Additional models were run to investigate associations with dimensional measures of behaviour. We identified one component that differed significantly between groups (coefficient = 0.33, padj = 0.02). This was driven (99%) by variance of the right fusiform gyrus connectopic map 2. While there were multiple nominal (uncorrected p < 0.05) associations with behavioural measures, none were significant following multiple comparison correction. Our analysis considered the relative contributions of both structural and functional brain phenotypes simultaneously, finding that functional phenotypes drive associations with autism. These findings expanded on previous unimodal studies by revealing the topographic organisation of functional connectivity patterns specific to autism and warrant further investigation.
Asunto(s)
Trastorno Autístico , Humanos , Trastorno Autístico/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Sustancia Gris , Corteza Cerebral , DifusiónRESUMEN
Sensory atypicalities are particularly common in autism spectrum disorders (ASD). Nevertheless, our knowledge about the divergent functioning of the underlying somatosensory region and its association with ASD phenotype features is limited. We applied a data-driven approach to map the fine-grained variations in functional connectivity of the primary somatosensory cortex (S1) to the rest of the brain in 240 autistic and 164 neurotypical individuals from the EU-AIMS LEAP dataset, aged between 7 and 30. We estimated the S1 connection topography ('connectopy') at rest and during the emotional face-matching (Hariri) task, an established measure of emotion reactivity, and accessed its association with a set of clinical and behavioral variables. We first demonstrated that the S1 connectopy is organized along a dorsoventral axis, mapping onto the S1 somatotopic organization. We then found that its spatial characteristics were linked to the individuals' adaptive functioning skills, as measured by the Vineland Adaptive Behavior Scales, across the whole sample. Higher functional differentiation characterized the S1 connectopies of individuals with higher daily life adaptive skills. Notably, we detected significant differences between rest and the Hariri task in the S1 connectopies, as well as their projection maps onto the rest of the brain suggesting a task-modulating effect on S1 due to emotion processing. All in all, variation of adaptive skills appears to be reflected in the brain's mesoscale neural circuitry, as shown by the S1 connectivity profile, which is also differentially modulated during rest and emotional processing.
Asunto(s)
Trastorno del Espectro Autista , Corteza Somatosensorial , Humanos , Corteza Somatosensorial/diagnóstico por imagen , Encéfalo , Emociones , Mapeo Encefálico , Fenotipo , Imagen por Resonancia MagnéticaRESUMEN
BACKGROUND: The cerebellum contains more than 50% of all neurons in the brain and is involved in a broad range of cognitive functions, including social communication and social cognition. Inconsistent atypicalities in the cerebellum have been reported in individuals with autism compared to controls suggesting the limits of categorical case control comparisons. Alternatively, investigating how clinical dimensions are related to neuroanatomical features, in line with the Research Domain Criteria approach, might be more relevant. We hypothesized that the volume of the "cognitive" lobules of the cerebellum would be associated with social difficulties. METHODS: We analyzed structural MRI data from a large pediatric and transdiagnostic sample (Healthy Brain Network). We performed cerebellar parcellation with a well-validated automated segmentation pipeline (CERES). We studied how social communication abilities-assessed with the social component of the Social Responsiveness Scale (SRS)-were associated with the cerebellar structure, using linear mixed models and canonical correlation analysis. RESULTS: In 850 children and teenagers (mean age 10.8 ± 3 years; range 5-18 years), we found a significant association between the cerebellum, IQ and social communication performance in our canonical correlation model. LIMITATIONS: Cerebellar parcellation relies on anatomical boundaries, which does not overlap with functional anatomy. The SRS was originally designed to identify social impairments associated with autism spectrum disorders. CONCLUSION: Our results unravel a complex relationship between cerebellar structure, social performance and IQ and provide support for the involvement of the cerebellum in social and cognitive processes.
Asunto(s)
Cerebelo , Habilidades Sociales , Adolescente , Humanos , Niño , Cerebelo/diagnóstico por imagen , Encéfalo , Cognición/fisiología , Mapeo Encefálico , Imagen por Resonancia Magnética/métodosRESUMEN
Individuals with autism spectrum disorder (henceforth referred to as autism) display significant variation in clinical outcome. For instance, across age, some individuals' adaptive skills naturally improve or remain stable, while others' decrease. To pave the way for 'precision-medicine' approaches, it is crucial to identify the cross-sectional and, given the developmental nature of autism, longitudinal neurobiological (including neuroanatomical and linked genetic) correlates of this variation. We conducted a longitudinal follow-up study of 333 individuals (161 autistic and 172 neurotypical individuals, aged 6-30 years), with two assessment time points separated by ~12-24 months. We collected behavioural (Vineland Adaptive Behaviour Scale-II, VABS-II) and neuroanatomical (structural magnetic resonance imaging) data. Autistic participants were grouped into clinically meaningful "Increasers", "No-changers", and "Decreasers" in adaptive behaviour (based on VABS-II scores). We compared each clinical subgroup's neuroanatomy (surface area and cortical thickness at T1, ∆T (intra-individual change) and T2) to that of the neurotypicals. Next, we explored the neuroanatomical differences' potential genomic associates using the Allen Human Brain Atlas. Clinical subgroups had distinct neuroanatomical profiles in surface area and cortical thickness at baseline, neuroanatomical development, and follow-up. These profiles were enriched for genes previously associated with autism and for genes previously linked to neurobiological pathways implicated in autism (e.g. excitation-inhibition systems). Our findings suggest that distinct clinical outcomes (i.e. intra-individual change in clinical profiles) linked to autism core symptoms are associated with atypical cross-sectional and longitudinal, i.e. developmental, neurobiological profiles. If validated, our findings may advance the development of interventions, e.g. targeting mechanisms linked to relatively poorer outcomes.
Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Humanos , Estudios de Seguimiento , Neuroanatomía , Estudios TransversalesRESUMEN
BACKGROUND: Neuroimaging studies of functional connectivity (FC) in autism have been hampered by small sample sizes and inconsistent findings with regard to whether connectivity is increased or decreased in individuals with autism, whether these alterations affect focal systems or reflect a brain-wide pattern, and whether these are age and/or sex dependent. METHODS: The study included resting-state functional magnetic resonance imaging and clinical data from the EU-AIMS LEAP (European Autism Interventions Longitudinal European Autism Project) and the ABIDE (Autism Brain Imaging Data Exchange) 1 and 2 initiatives of 1824 (796 with autism) participants with an age range of 5-58 years. Between-group differences in FC were assessed, and associations between FC and clinical symptom ratings were investigated through canonical correlation analysis. RESULTS: Autism was associated with a brainwide pattern of hypo- and hyperconnectivity. Hypoconnectivity predominantly affected sensory and higher-order attentional networks and correlated with social impairments, restrictive and repetitive behavior, and sensory processing. Hyperconnectivity was observed primarily between the default mode network and the rest of the brain and between cortical and subcortical systems. This pattern was strongly associated with social impairments and sensory processing. Interactions between diagnosis and age or sex were not statistically significant. CONCLUSIONS: The FC alterations observed, which primarily involve hypoconnectivity of primary sensory and attention networks and hyperconnectivity of the default mode network and subcortex with the rest of the brain, do not appear to be age or sex dependent and correlate with clinical dimensions of social difficulties, restrictive and repetitive behaviors, and alterations in sensory processing. These findings suggest that the observed connectivity alterations are stable, trait-like features of autism that are related to the main symptom domains of the condition.
Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Conectoma , Humanos , Preescolar , Niño , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Conectoma/métodos , Trastorno Autístico/diagnóstico por imagen , Trastorno del Espectro Autista/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Vías Nerviosas/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodosRESUMEN
BACKGROUND: Reward processing has been proposed to underpin the atypical social feature of autism spectrum disorder (ASD). However, previous neuroimaging studies have yielded inconsistent results regarding the specificity of atypicalities for social reward processing in ASD. AIMS: Utilising a large sample, we aimed to assess reward processing in response to reward type (social, monetary) and reward phase (anticipation, delivery) in ASD. METHOD: Functional magnetic resonance imaging during social and monetary reward anticipation and delivery was performed in 212 individuals with ASD (7.6-30.6 years of age) and 181 typically developing participants (7.6-30.8 years of age). RESULTS: Across social and monetary reward anticipation, whole-brain analyses showed hypoactivation of the right ventral striatum in participants with ASD compared with typically developing participants. Further, region of interest analysis across both reward types yielded ASD-related hypoactivation in both the left and right ventral striatum. Across delivery of social and monetary reward, hyperactivation of the ventral striatum in individuals with ASD did not survive correction for multiple comparisons. Dimensional analyses of autism and attention-deficit hyperactivity disorder (ADHD) scores were not significant. In categorical analyses, post hoc comparisons showed that ASD effects were most pronounced in participants with ASD without co-occurring ADHD. CONCLUSIONS: Our results do not support current theories linking atypical social interaction in ASD to specific alterations in social reward processing. Instead, they point towards a generalised hypoactivity of ventral striatum in ASD during anticipation of both social and monetary rewards. We suggest this indicates attenuated reward seeking in ASD independent of social content and that elevated ADHD symptoms may attenuate altered reward seeking in ASD.
Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno del Espectro Autista , Trastorno Autístico , Humanos , Trastorno del Espectro Autista/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Recompensa , Imagen por Resonancia Magnética/métodosRESUMEN
Neurodevelopmental disorders - including attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder, communication disorders, intellectual disability, motor disorders, specific learning disorders, and tic disorders - manifest themselves early in development. Valid, reliable and broadly usable biomarkers supporting a timely diagnosis of these disorders would be highly relevant from a clinical and public health standpoint. We conducted the first systematic review of studies on candidate diagnostic biomarkers for these disorders in children and adolescents. We searched Medline and Embase + Embase Classic with terms relating to biomarkers until April 6, 2022, and conducted additional targeted searches for genome-wide association studies (GWAS) and neuroimaging or neurophysiological studies carried out by international consortia. We considered a candidate biomarker as promising if it was reported in at least two independent studies providing evidence of sensitivity and specificity of at least 80%. After screening 10,625 references, we retained 780 studies (374 biochemical, 203 neuroimaging, 133 neurophysiological and 65 neuropsychological studies, and five GWAS), including a total of approximately 120,000 cases and 176,000 controls. While the majority of the studies focused simply on associations, we could not find any biomarker for which there was evidence - from two or more studies from independent research groups, with results going into the same direction - of specificity and sensitivity of at least 80%. Other important metrics to assess the validity of a candidate biomarker, such as positive predictive value and negative predictive value, were infrequently reported. Limitations of the currently available studies include mostly small sample size, heterogeneous approaches and candidate biomarker targets, undue focus on single instead of joint biomarker signatures, and incomplete accounting for potential confounding factors. Future multivariable and multi-level approaches may be best suited to find valid candidate biomarkers, which will then need to be validated in external, independent samples and then, importantly, tested in terms of feasibility and cost-effectiveness, before they can be implemented in daily clinical practice.
RESUMEN
OBJECTIVE: The male preponderance in prevalence of autism is among the most pronounced sex ratios across neurodevelopmental conditions. The authors sought to elucidate the relationship between autism and typical sex-differential neuroanatomy, cognition, and related gene expression. METHODS: Using a novel deep learning framework trained to predict biological sex based on T1-weighted structural brain images, the authors compared sex prediction model performance across neurotypical and autistic males and females. Multiple large-scale data sets comprising T1-weighted MRI data were employed at four stages of the analysis pipeline: 1) pretraining, with the UK Biobank sample (>10,000 individuals); 2) transfer learning and validation, with the ABIDE data sets (1,412 individuals, 5-56 years of age); 3) test and discovery, with the EU-AIMS/AIMS-2-TRIALS LEAP data set (681 individuals, 6-30 years of age); and 4) specificity, with the NeuroIMAGE and ADHD200 data sets (887 individuals, 7-26 years of age). RESULTS: Across both ABIDE and LEAP, features positively predictive of neurotypical males were on average significantly more predictive of autistic males (ABIDE: Cohen's d=0.48; LEAP: Cohen's d=1.34). Features positively predictive of neurotypical females were on average significantly less predictive of autistic females (ABIDE: Cohen's d=1.25; LEAP: Cohen's d=1.29). These differences in sex prediction accuracy in autism were not observed in individuals with ADHD. In autistic females, the male-shifted neurophenotype was further associated with poorer social sensitivity and emotional face processing while also associated with gene expression patterns of midgestational cell types. CONCLUSIONS: The results demonstrate an increased resemblance in both autistic male and female individuals' neuroanatomy with male-characteristic patterns associated with typically sex-differential social cognitive features and related gene expression patterns. The findings hold promise for future research aimed at refining the quest for biological mechanisms underpinning the etiology of autism.