Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Stem Cell Reports ; 19(2): 224-238, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38278152

RESUMEN

The myeloproliferative disease polycythemia vera (PV) driven by the JAK2 V617F mutation can transform into myelofibrosis (post-PV-MF). It remains an open question how JAK2 V617F in hematopoietic stem cells induces MF. Megakaryocytes are major players in murine PV models but are difficult to study in the human setting. We generated induced pluripotent stem cells (iPSCs) from JAK2 V617F PV patients and differentiated them into megakaryocytes. In differentiation assays, JAK2 V617F iPSCs recapitulated the pathognomonic skewed megakaryocytic and erythroid differentiation. JAK2 V617F iPSCs had a TPO-independent and increased propensity to differentiate into megakaryocytes. RNA sequencing of JAK2 V617F iPSC-derived megakaryocytes reflected a proinflammatory, profibrotic phenotype and decreased ribosome biogenesis. In three-dimensional (3D) coculture, JAK2 V617F megakaryocytes induced a profibrotic phenotype through direct cell contact, which was reversed by the JAK2 inhibitor ruxolitinib. The 3D coculture system opens the perspective for further disease modeling and drug discovery.


Asunto(s)
Células Madre Pluripotentes Inducidas , Policitemia Vera , Humanos , Ratones , Animales , Médula Ósea/patología , Megacariocitos , Janus Quinasa 2/genética , Policitemia Vera/genética , Policitemia Vera/patología , Fenotipo , Fibrosis , Mutación
2.
Cell Rep ; 43(1): 113608, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38117649

RESUMEN

The role of hematopoietic Hedgehog signaling in myeloproliferative neoplasms (MPNs) remains incompletely understood despite data suggesting that Hedgehog (Hh) pathway inhibitors have therapeutic activity in patients. We aim to systematically interrogate the role of canonical vs. non-canonical Hh signaling in MPNs. We show that Gli1 protein levels in patient peripheral blood mononuclear cells (PBMCs) mark fibrotic progression and that, in murine MPN models, absence of hematopoietic Gli1, but not Gli2 or Smo, significantly reduces MPN phenotype and fibrosis, indicating that GLI1 in the MPN clone can be activated in a non-canonical fashion. Additionally, we establish that hematopoietic Gli1 has a significant effect on stromal cells, mediated through a druggable MIF-CD74 axis. These data highlight the complex interplay between alterations in the MPN clone and activation of stromal cells and indicate that Gli1 represents a promising therapeutic target in MPNs, particularly that Hh signaling is dispensable for normal hematopoiesis.


Asunto(s)
Antineoplásicos , Trastornos Mieloproliferativos , Neoplasias , Humanos , Ratones , Animales , Proteínas Hedgehog/metabolismo , Proteína con Dedos de Zinc GLI1/metabolismo , Leucocitos Mononucleares/metabolismo , Hematopoyesis
4.
Eur J Immunol ; 52(12): 1880-1888, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36045608

RESUMEN

Novel and exciting avenues allow generating dendritic cells (DC) by reprogramming of somatic cells. DC are obtained from induced pluripotent stem cells (iPS cells), referred to as ipDC, and by direct reprogramming of cells toward DC, referred to as induced DC (iDC). iPS cells represent pluripotent stem cells generated by reprogramming of somatic cells and can differentiate into all cell types of the body, including DC. This makes iPS cells and ipDC derived thereof useful for studying various DC subsets, acquiring high cell numbers for research and clinical use, or applying genome editing to generate DC with wanted properties. Thereby, ipDC overcome limitations in specific DC subsets, which are only found in low abundance in blood or lymphoid organs. iDC are generated by direct reprogramming of somatic cells with a specific set of transcription factors and offer an avenue to obtain DC without a pluripotent cell intermediate. ipDC and iDC retain patient and disease-specific mutations and this opens new perspectives for studying DC in disease. This review summarizes the current techniques used to generate ipDC and iDC, and the types and functionality of the DC generated.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Células Dendríticas
5.
Front Cell Dev Biol ; 9: 667304, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34368123

RESUMEN

Dendritic cells (DC) are professional antigen-presenting cells that develop from hematopoietic stem cells. Different DC subsets exist based on ontogeny, location and function, including the recently identified proinflammatory DC3 subset. DC3 have the prominent activity to polarize CD8+ T cells into CD8+ CD103+ tissue resident T cells. Here we describe human DC3 differentiated from induced pluripotent stem cells (iPS cells). iPS cell-derived DC3 have the gene expression and surface marker make-up of blood DC3 and polarize CD8+ T cells into CD8+ CD103+ tissue-resident memory T cells in vitro. To test the impact of malignant JAK2 V617F mutation on DC3, we differentiated patient-specific iPS cells with JAK2 V617Fhet and JAK2 V617Fhom mutations into JAK2 V617Fhet and JAK2 V617Fhom DC3. The JAK2 V617F mutation enhanced DC3 production and caused a bias toward erythrocytes and megakaryocytes. The patient-specific iPS cell-derived DC3 are expected to allow studying DC3 in human diseases and developing novel therapeutics.

6.
Mol Cancer Res ; 18(10): 1545-1559, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32646965

RESUMEN

Numerous noncoding transcripts have been reported to correlate with cancer development and progression. Nevertheless, there remains a paucity of long noncoding RNAs (lncRNA) with well-elucidated functional roles. Here, we leverage the International Cancer Genome Consortium-Early Onset Prostate Cancer transcriptome and identify the previously uncharacterized lncRNA LINC00920 to be upregulated in prostate tumors. Phenotypic characterization of LINC00920 revealed its positive impact on cellular proliferation, colony formation, and migration. We demonstrate that LINC00920 transcription is directly activated by ERG, an oncogenic transcription factor overexpressed in 50% of prostate cancers. Chromatin isolation by RNA purification-mass spectrometry revealed the interaction of LINC00920 with the 14-3-3ε protein, leading to enhanced sequestration of tumor suppressive FOXO1. Altogether, our results provide a rationale on how ERG overexpression, partly by driving LINC00920 transcription, could confer survival advantage to prostate cancer cells and potentially prime PTEN-intact prostate cells for cellular transformation through FOXO inactivation. IMPLICATIONS: The study describes a novel lncRNA-mediated mechanism of regulating the FOXO signaling pathway and provides additional insight into the role of ERG in prostate cancer cells.


Asunto(s)
Proteínas 14-3-3/metabolismo , Proteína Forkhead Box O1/metabolismo , Neoplasias de la Próstata/metabolismo , Proteínas 14-3-3/genética , Línea Celular Tumoral , Supervivencia Celular/fisiología , Proteína Forkhead Box O1/genética , Humanos , Masculino , Células PC-3 , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Regulador Transcripcional ERG/genética , Regulador Transcripcional ERG/metabolismo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA