Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 10879, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740840

RESUMEN

The areal extent of seagrass meadows is in rapid global decline, yet they provide highly valuable societal benefits. However, their conservation is hindered by data gaps on current and historic spatial extents. Here, we outline an approach for national-scale seagrass mapping and monitoring using an open-source platform (Google Earth Engine) and freely available satellite data (Landsat, Sentinel-2) that can be readily applied in other countries globally. Specifically, we map contemporary (2021) and historical (2000-2021; n = 10 maps) shallow water seagrass extent across the Maldives. We found contemporary Maldivian seagrass extent was ~ 105 km2 (overall accuracy = 82.04%) and, notably, that seagrass area increased threefold between 2000 and 2021 (linear model, + 4.6 km2 year-1, r2 = 0.93, p < 0.001). There was a strongly significant association between seagrass and anthropogenic activity (p < 0.001) that we hypothesize to be driven by nutrient loading and/or altered sediment dynamics (from large scale land reclamation), which would represent a beneficial anthropogenic influence on Maldivian seagrass meadows. National-scale tropical seagrass expansion is unique against the backdrop of global seagrass decline and we therefore highlight the Maldives as a rare global seagrass 'bright spot' highly worthy of increased attention across scientific, commercial, and conservation policy contexts.


Asunto(s)
Conservación de los Recursos Naturales , Océano Índico , Ecosistema , Monitoreo del Ambiente/métodos , Islas del Oceano Índico
2.
Oecologia ; 200(3-4): 515-528, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36342526

RESUMEN

Climate change is increasing water temperature and intensifying the incidence of cyanobacterial blooms worldwide. However, the combined effects of increased temperature and microcystin concentrations as co-stressors on survival and ecological processes in freshwater species are unclear. Here, using purified MC-LR and crude extract of toxigenic Microcystis aeruginosa, we tested the individual and combined effects of three water temperatures (15, 20, 25 °C) and a range of environmentally relevant concentrations of dissolved microcystin and crude extract (0.01-10 µg·L-1) on survival, growth inhibition, grazing and predation rates in three freshwater species: phytoplankton (Scenedesmus quadricauda), zooplankton (Daphnia pulex), and an invertebrate predator (Ischnura elegans). Purified MC-LR exerted a higher growth inhibitory effect on S. quadricauda compared to crude extract with the same concentration of MC-LR, while neither treatment affected its chlorophyll-a content or survival of D. pulex. Crude extract reduced grazing and survival of D. pulex and I. elegans, respectively. The combined effect of higher temperature and crude extract reduced I. elegans survival by 50%. Increased temperature reduced prey handing time in I. elegans by 49%, suggesting a higher predation rate. However, warming together with higher concentrations of crude extract jointly increased zooplankton grazing and reduced damselfly predation. Taken together, these results suggest crude extract, and not necessarily microcystin, can affect survival and productivity in freshwater species, although these effects may vary unevenly across trophic levels. Our findings highlight the importance of complex ecological mechanisms by which warming can exacerbate toxic effects of cyanobacterial bloom extracts on survival and functions among species in eutrophic freshwaters.


Asunto(s)
Cianobacterias , Siphonaptera , Animales , Agua , Microcistinas/toxicidad , Temperatura , Agua Dulce , Zooplancton , Mezclas Complejas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...