Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mol Metab ; 85: 101959, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38763496

RESUMEN

OBJECTIVES: Aggregation and misfolding of amyloid beta (Aß) and tau proteins, suggested to arise from post-translational modification processes, are thought to be the main cause of Alzheimer's disease (AD). Additionally, a plethora of evidence exists that links metabolic dysfunctions such as obesity, type 2 diabetes (T2D), and dyslipidemia to the pathogenesis of AD. We thus investigated the combinatory effect of T2D and human glutaminyl cyclase activity (pyroglutamylation), on the pathology of AD and whether astaxanthin (ASX) treatment ameliorates accompanying pathophysiological manifestations. METHODS: Male transgenic AD mice, APPxhQC, expressing human APP751 with the Swedish and the London mutation and human glutaminyl cyclase (hQC) enzyme and their non-transgenic (NTG) littermates were used. Both APPxhQC and NTG mice were allocated to 3 groups, control, T2D-control, and T2D-ASX. Mice were fed control or high fat diet ± ASX for 13 weeks starting at an age of 11-12 months. High fat diet fed mice were further treated with streptozocin for T2D induction. Effects of genotype, T2D induction, and ASX treatment were evaluated by analysing glycemic readouts, lipid concentration, Aß deposition, hippocampus-dependent cognitive function and nutrient sensing using immunosorbent assay, ELISA-based assays, western blotting, immunofluorescence staining, and behavioral testing via Morris water maze (MWM), respectively. RESULTS: APPxhQC mice presented a higher glucose sensitivity compared to NTG mice. T2D-induced brain dysfunction was more severe in NTG compared to the APPxhQC mice. T2D induction impaired memory functions while increasing hepatic LC3B, ABCA1, and p65 levels in NTG mice. T2D induction resulted in a progressive shift of Aß from the soluble to insoluble form in APPxhQC mice. ASX treatment reversed T2D-induced memory dysfunction in NTG mice and in parallel increased hepatic pAKT while decreasing p65 and increasing cerebral p-S6rp and p65 levels. ASX treatment reduced soluble Aß38 and Aß40 and insoluble Aß40 levels in T2D-induced APPxhQC mice. CONCLUSIONS: We demonstrate that T2D induction in APPxhQC mice poses additional risk for AD pathology as seen by increased Aß deposition. Although ASX treatment reduced Aß expression in T2D-induced APPxhQC mice and rescued T2D-induced memory impairment in NTG mice, ASX treatment alone may not be effective in cases of T2D comorbidity and AD.

2.
Brain Res ; 1819: 148518, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37579986

RESUMEN

Defective degradation and clearance of amyloid-ß as well as inflammation per se are crucial players in the pathology of Alzheimer's disease (AD). A defective transport across the blood-brain barrier is causative for amyloid-ß (Aß) accumulation in the brain, provoking amyloid plaque formation. Using primary porcine brain capillary endothelial cells and murine organotypic hippocampal slice cultures as in vitro models of AD, we investigated the effects of the antioxidant astaxanthin (ASX) on Aß clearance and neuroinflammation. We report that ASX enhanced the clearance of misfolded proteins in primary porcine brain capillary endothelial cells by inducing autophagy and altered the Aß processing pathway. We observed a reduction in the expression levels of intracellular and secreted amyloid precursor protein/Aß accompanied by an increase in ABC transporters ABCA1, ABCG1 as well as low density lipoprotein receptor-related protein 1 mRNA levels. Furthermore, ASX treatment increased autophagic flux as evidenced by increased lipidation of LC3B-II as well as reduced protein expression of phosphorylated S6 ribosomal protein and mTOR. In LPS-stimulated brain slices, ASX exerted anti-inflammatory effects by reducing the secretion of inflammatory cytokines while shifting microglia polarization from M1 to M2 phenotype. Our data suggest ASX as potential therapeutic compound ameliorating AD-related blood brain barrier impairment and inflammation.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Porcinos , Enfermedad de Alzheimer/metabolismo , Barrera Hematoencefálica/metabolismo , Péptidos beta-Amiloides/metabolismo , Células Endoteliales/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Autofagia , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Ratones Transgénicos , Modelos Animales de Enfermedad
3.
Front Neurosci ; 17: 1087788, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37065917

RESUMEN

Introduction: Autism spectrum disorder (ASD) is a persistent neurodevelopmental condition characterized by two core behavioral symptoms: impaired social communication and interaction, as well as stereotypic, repetitive behavior. No distinct cause of ASD is known so far; however, excitatory/inhibitory imbalance and a disturbed serotoninergic transmission have been identified as prominent candidates responsible for ASD etiology. Methods: The GABA B receptor agonist R-Baclofen and the selective agonist for the 5HT7 serotonin receptor LP-211 have been reported to correct social deficits and repetitive behaviors in mouse models of ASD. To evaluate the efficacy of these compounds in more details, we treated BTBR T+ Itpr3 tf /J and B6.129P2-Fmr1 tm1Cgr /J mice acutely with R-Baclofen or LP-211 and evaluated the behavior of animals in a series of tests. Results: BTBR mice showed motor deficits, elevated anxiety, and highly repetitive behavior of self-grooming. Fmr1-KO mice exhibited decreased anxiety and hyperactivity. Additionally, Fmr1-KO mice's ultrasonic vocalizations were impaired suggesting a reduced social interest and communication of this strain. Acute LP-211 administration did not affect the behavioral abnormalities observed in BTBR mice but improved repetitive behavior in Fmr1-KO mice and showed a trend to change anxiety of this strain. Acute R-Baclofen treatment improved repetitive behavior only in Fmr1-KO mice. Conclusion: Our results add value to the current available data on these mouse models and the respective compounds. Yet, additional studies are needed to further test R-Baclofen and LP-211 as potential treatments for ASD therapy.

5.
Biomolecules ; 12(3)2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35327537

RESUMEN

Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are two common types of α-synucleinopathies and represent a high unmet medical need. Despite diverging clinical manifestations, both neurodegenerative diseases share several facets of their complex pathophysiology. Apart from α-synuclein aggregation, an impairment of mitochondrial functions, defective protein clearance systems and excessive inflammatory responses are consistently observed in the brains of PD as well as DLB patients. Leukotrienes are lipid mediators of inflammatory signaling traditionally known for their role in asthma. However, recent research advances highlight a possible contribution of leukotrienes, along with their rate-limiting synthesis enzyme 5-lipoxygenase, in the pathogenesis of central nervous system disorders. This review provides an overview of in vitro as well as in vivo studies, in summary suggesting that dysregulated leukotriene signaling is involved in the pathological processes underlying PD and DLB. In addition, we discuss how the leukotriene signaling pathway could serve as a future drug target for the therapy of PD and DLB.


Asunto(s)
Enfermedad por Cuerpos de Lewy , Enfermedad de Parkinson , Sinucleinopatías , Encéfalo/metabolismo , Humanos , Leucotrienos , Enfermedad de Parkinson/patología , Transducción de Señal , alfa-Sinucleína/metabolismo
6.
Alzheimers Res Ther ; 13(1): 175, 2021 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-34656177

RESUMEN

BACKGROUND: To better understand the etiology and pathomechanisms of Alzheimer's disease, several transgenic animal models that overexpress human tau or human amyloid-beta (Aß) have been developed. In the present study, we generated a novel transgenic rat model by cross-breeding amyloid precursor protein (APP) rats with tau rats. We characterized this model by performing positron emission tomography scans combined with immunofluorescent labeling and cerebrospinal fluid analyses. METHODS: APP/Tau rats were generated by cross-breeding male McGill-R-Thy1-APP transgenic rats with female hTau-40/P301L transgenic rats. APP/Tau double transgenic rats and non-transgenic (ntg) littermates aged 7, 13, and 21 months were subjected to dynamic [11C] PiB scan and dynamic [18F]THK-5317 scans. For regional brain analysis, a template was generated from anatomical MR images of selected animals, which was co-registered with the PET images. Regional analysis was performed by application of the simplified reference tissue model ([11C]PiB data), whereas [18F]THK-5317 data were analyzed using a 2-tissue compartment model and Logan graphical analysis. In addition, immunofluorescent labeling (tau, amyloid) and cerebrospinal fluid analyses were performed. RESULTS: [11C]PiB binding potential (BPND) and [18F]THK-5317 volume of distribution (VT) showed an increase with age in several brain regions in the APP/Tau group but not in the ntg control group. Immunohistochemical analysis of brain slices of PET-scanned animals revealed a positive correlation between Aß labeling and [11C]PiB regional BPND. Tau staining yielded a trend towards higher levels in the cortex and hippocampus of APP/Tau rats compared with ntg littermates, but without reaching statistical significance. No correlation was found between tau immunofluorescence labeling results and the respective [18F]THK-5317 VT values. CONCLUSIONS: We thoroughly characterized a novel APP/Tau rat model using combined PET imaging and immunofluorescence analysis. We observed an age-related increase in [11C]PiB and [18F]THK-5317 binding in several brain regions in the APP/Tau group but not in the ntg group. Although we were able to reveal a positive correlation between amyloid labeling and [11C]PiB regional brain uptake, we observed relatively low human tau and amyloid fibril expression levels and a somewhat unstable brain pathology which questions the utility of this animal model for further studies.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides , Precursor de Proteína beta-Amiloide/genética , Animales , Femenino , Masculino , Tomografía de Emisión de Positrones , Ratas , Ratas Transgénicas
7.
Front Mol Neurosci ; 14: 681868, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34248499

RESUMEN

Amyotrophic lateral sclerosis (ALS) still depicts an incurable and devastating disease. Drug development efforts are mostly based on superoxide dismutase 1 gene (SOD1)-G93A mice that present a very strong and early phenotype, allowing only a short time window for intervention. An alternative mouse model is available, that is based on the same founder line but has a reduced SOD1-G93A copy number, resulting in a weaker and delayed phenotype. To be able to use these SOD1-G93A/low mice for drug testing, we performed a characterization of ALS-typical pathologies. All analyses were performed compared to non-transgenic (ntg) littermates of the same sex and age. In vivo analysis of SOD1-G93A/low mice was performed by weekly body weight measurements, analysis of the survival rate, and measurement of the muscle strength of 24-30 weeks old female and male SOD1-G93A/low mice. Immunofluorescent labeling of SOD1, glial fibrillary acidic protein (GFAP), and ionized calcium-binding adaptor molecule 1 (Iba1) protein was performed in the cervical, thoracic, and lumbar ventral horn of the spinal cord of 24-30 weeks old male and female SOD1-G93A/low mice. The musculus gastrocnemius of male SOD1-G93A/low mice was labeled with fluorophore-conjugated α-bungarotoxin and antibodies against phosphorylated neurofilaments. Fluorescent labeling was detected and quantified by macro-based image analysis. Although SOD1 protein levels were highly increased in both sexes and all age groups, levels strongly peaked in 30 weeks old male SOD1-G93A/low mice. Astrocytosis and activated microglia in the spinal cord ventral horn and phosphorylated neurofilaments in the motor unit of the musculus gastrocnemius progressively increased, while muscle strength progressively decreased in male SOD1-G93A/low mice. In female SOD1-G93A/low mice, only activated microglia increased progressively, while muscle strength was constantly reduced starting at 26 weeks. These differences result in a shorter survival time of male SOD1-G93A/low mice of about 3 weeks compared to female animals. The results suggest that male SOD1-G93A/low mice present a stronger pathology and are, therefore, better suitable to evaluate the efficacy of new drugs against ALS as most pathological features are developing progressively paralleled by a survival time that allows treatment to start before symptom onset.

8.
Brain Res ; 1761: 147396, 2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33662341

RESUMEN

Huntington's disease is known to be a purely genetic disease based on an expansion of a CAG base triplet repeat in the coding region of the Huntingtin gene. Some years ago, researchers were able to introduce the extensive full-length gene sequence of the mutant huntingtin gene into a rodent model. The resulting BACHD rat is already well characterized for behavioral deficits. So far, all analyses in this preclinical rat model were performed in male hemizygous animals. As homozygosity of transgenic models often causes an amplification of the phenotype and female HD patients present a stronger phenotype compared to men, we established a homozygous breeding colony and tested 2 and 5 months old homozygous male and female BACHD rats in a behavioral test battery. The tests included the grip strength test, Rota Rod, elevated plus maze, passive avoidance, and Barnes maze test. Our results show strong deficits in young female homozygous BACHD rats including increased body weight, motor deficits, muscle weakness, reduced anxiety and hypoactivity, as well as learning and memory deficits. Analysis of male homozygous BACHD rats showed only weak disease symptoms, similar compared to male hemizygous BACHD rats of already published studies. Evaluation of the breeding success showed that homozygous BACHD have a reduced number of pups at the time of birth that even decreases until weaning. Our results suggest that the phenotype of homozygous male BACHD rats barely differs from already published results of hemizygous BACHD rats while female homozygous BACHD rats display strong and early alterations.

9.
J Alzheimers Dis ; 80(3): 1151-1168, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33646155

RESUMEN

BACKGROUND: Preclinical Alzheimer's disease (AD) research strongly depends on transgenic mouse models that display major symptoms of the disease. Although several AD mouse models have been developed representing relevant pathologies, only a fraction of available mouse models, like the Tg4-42 mouse model, display hippocampal atrophy caused by the death of neurons as the key feature of AD. The Tg4-42 mouse model is therefore very valuable for use in preclinical research. Furthermore, metabolic biomarkers which have the potential to detect biochemical changes, are crucial to gain deeper insights into the pathways, the underlying pathological mechanisms and disease progression. OBJECTIVE: We thus performed an in-depth characterization of Tg4-42 mice by using an integrated approach to analyze alterations of complex biological networks in this AD in vivo model. METHODS: Therefore, untargeted NMR-based metabolomic phenotyping was combined with behavioral tests and immunohistological and biochemical analyses. RESULTS: Our in vivo experiments demonstrate a loss of body weight increase in homozygous Tg4-42 mice over time as well as severe impaired learning behavior and memory deficits in the Morris water maze behavioral test. Furthermore, we found significantly altered metabolites in two different brain regions and metabolic changes of the glutamate/4-aminobutyrate-glutamine axis. Based on these results, downstream effects were analyzed showing increased Aß42 levels, increased neuroinflammation as indicated by increased astro- and microgliosis as well as neuronal degeneration and neuronal loss in homozygous Tg4-42 mice. CONCLUSION: Our study provides a comprehensive characterization of the Tg4-42 mouse model which could lead to a deeper understanding of pathological features of AD. Additionally this study reveals changes in metabolic biomarker which set the base for future preclinical studies or drug development.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/genética , Modelos Animales de Enfermedad , Animales , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fenotipo
10.
Front Mol Neurosci ; 13: 136, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32982685

RESUMEN

Excessive tau phosphorylation is the hallmark of tauopathies. Today's research thus focusses on the development of drugs targeting this pathological feature. To test new drugs in preclinical studies, animal models are needed that properly mimic this pathological hallmark. The htau mouse is a well-known model expressing human but lacking murine tau, allowing to evaluate the efficacy of tau modifying compounds without interference from murine tau. Htau mice are well-characterized for tau pathology at older age, although it is often not specified on which genetic background analyzed animals were bred. Since it was shown that the genetic background can influence the pathology, we evaluated the phosphorylation status of young and adult htau mice on a C57BL/6J background by analyzing ptau Ser202 and ptau Ser396 levels in the cortex and hippocampus of 3 and 12 month old animals by immunofluorescent labelling. Additionally, we evaluated total tau, ptau Thr231 and ptau Thr181 in the soluble and insoluble brain fraction of 3-15 month old htau mice by immunosorbent assay. Our results show that ptau levels of all analyzed residues and age groups are similar without strong increases over age. These data show that tau is already phosphorylated at the age of 3 months suggesting that phosphorylation starts even earlier. The early start of tau phosphorylation in htau mice enables the use of these mice for efficacy studies already at very young age.

11.
PLoS One ; 15(7): e0235543, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32645028

RESUMEN

Senile plaques frequently contain Aß-pE(3), a N-terminally truncated Aß species that is more closely linked to AD compared to other Aß species. Tau protein is highly phosphorylated at several residues in AD, and specifically phosphorylation at Ser202/Thr205 is known to be increased in AD. Several studies suggest that formation of plaques and tau phosphorylation might be linked to each other. To evaluate if Aß-pE(3) and ptau Ser202/Thr205 levels correlate in human and transgenic AD mouse models, we analyzed human cortical and hippocampal brain tissue of different Braak stages as well as murine brain tissue of two transgenic mouse models for levels of Aß-pE(3) and ptau Ser202/Thr205 and correlated the data. Our results show that Aß-pE(3) formation is increased at early Braak stages while ptau Ser202/Thr205 mostly increases at later stages. Further analyses revealed strongest correlations between the two pathologies in the temporal, frontal, cingulate, and occipital cortex, however correlation in the hippocampus was weaker. Evaluation of murine transgenic brain tissue demonstrated a slow but steady increase of Aß-pE(3) from 6 to 12 months of age in the cortex and hippocampus of APPSL mice, and a very early and strong Aß-pE(3) increase in 5xFAD mice. ptau Ser202/Thr205 levels increased at the age of 9 months in APPSL mice and at 6 months in 5xFAD mice. Our results show that Aß-pE(3) and ptau Ser202/Thr205 levels strongly correlate in human as well as murine tissues, suggesting that tau phosphorylation might be amplified by Aß-pE(3).


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Proteínas tau/metabolismo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/genética , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Fosforilación , Ácido Pirrolidona Carboxílico/química , Especificidad de la Especie , Proteínas tau/genética
12.
Behav Brain Res ; 393: 112783, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32574646

RESUMEN

Huntington disease (HD) is a neurodegenerative disorder caused by a polyglutamine expansion in the HTT gene. Various HD animal models have been generated to mimic the motor, cognitive and neuropsychiatric disturbances that affect HD patients. Reproducing disease phenotypes within these models is essential to identify reliable readouts for therapy studies. We validated behavioral phenotypes shown earlier by other research groups in the BACHD rat model, using both previously applied and novel tests for motor, cognitive and anxiety-like behaviors. We first confirmed known BACHD rats' phenotypes in rotarod, open field (OF) and elevated plus maze (EPM) tests. We then assessed the reproducibility of key phenotypes in the model using new tests: cliff hanging, passive avoidance (PA), Morris water maze (MWM), light dark box and light spot tests. We confirmed impaired motor coordination in the rotarod test and reduced activity in the OF. In line with earlier results in BACHD rats using different tests, we showed impaired reversal learning in MWM and decreased anxiety-like behavior with the light spot test supporting the validity of BACHD rats as a model of HD. Results in the EPM, light dark box, cliff hanging and PA tests did not confirm earlier findings. This may depend on phenotype inconsistencies or rather be related to differences in environmental variables, test typology, experimental settings, animal age and chosen behavioral parameters.


Asunto(s)
Conducta Animal , Modelos Animales de Enfermedad , Enfermedad de Huntington/psicología , Animales , Reacción de Prevención , Masculino , Aprendizaje por Laberinto , Fenotipo , Ratas , Ratas Sprague-Dawley , Prueba de Desempeño de Rotación con Aceleración Constante
13.
Front Neurosci ; 14: 579, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32595447

RESUMEN

Neurofilament-light chain (NF-L) is a well-known clinical biomarker of many neurodegenerative diseases. By analyzing amyotrophic lateral sclerosis (ALS) patients cerebrospinal fluid (CSF) or plasma, progression of NF-L levels can forecast conversion from the presymptomatic to symptomatic stage and time of survival. The use of plasma for NF-L measurement makes this biomarker exceptionally valuable for clinical studies since sample collection can be performed repeatedly without causing much harm. Detailed analyses of NF-L expression in neurodegenerative disease patient's samples were already performed, while NF-L levels of preclinical models of ALS, Alzheimer's and Parkinson's disease as well as lysosomal storage diseases are still widely unknown. We therefore evaluated NF-L levels in the plasma of the ALS models SOD1-G93A low expressor and TAR6/6 mice, the Alzheimer's disease (AD) model 5xFAD, the Parkinson's disease model Line 61 and the Gaucher disease (GD) model 4L/PS-NA and the CSF of selected models. Our results show that NF-L levels are highly increased in the plasma of ALS, Alzheimer's and GD models, while in the analyzed Parkinson's disease model NF-L plasma levels barely changed. Most analyzed models show a progressive increase of NF-L levels. NF-L measurements in the plasma of the neurodegenerative disease mouse models of ALS and AD are thus a good tool to evaluate disease progression. Compared to analyses in human tissues, our results suggest a high translation value of murine NF-L levels and their progression. Furthermore, our data indicate that NF-L might also be a good biomarker for disorders with a neuronal component like some lysosomal storage diseases.

14.
Sci Rep ; 10(1): 6377, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32286473

RESUMEN

Alzheimer's disease can be modelled by different transgenic mouse strains. To gain deeper insight into disease model mechanisms, the previously described Tg4-42 mouse was analysed for transgene integration. On RNA/DNA level the transgene integration resulted in more than 20 copy numbers and further caused a deletion of exon 2 of the retinoic acid receptor beta. These findings were also confirmed on protein level with highly decreased retinoic acid receptor beta protein levels in homozygous Tg4-42 mice and may have an impact on the previously described phenotype of homozygous Tg4-42 mice to be solely dependent on amyloid-ß 4-42 expression. Since hemizygous mice show no changes in RARB protein levels it can be concluded that the previously described phenotype of these mice should not be affected by the retinoic acid receptor beta gene knockout. In order to fully understand the results of transgenesis, it is extremely advisable to determine the genome integration site and the basic structure of the inserted transgenes. This can be carried out for instance by next-generation sequencing techniques. Our results thus suggest that a detailed characterization of new disease models using the latest genomics technologies prior to functional studies could be a valuable tool to avoid an unexpected genetic influence on the animals' phenotype that is not only based on the inserted transgene. This would also significantly improve the selection of mouse models that are best suited for therapeutic development and basic research.


Asunto(s)
Enfermedad de Alzheimer/genética , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Receptores de Ácido Retinoico/metabolismo , Transgenes , Animales , Regulación hacia Abajo , Homocigoto , Ratones , Ratones Transgénicos , Fenotipo
15.
Nucl Med Biol ; 84-85: 28-32, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31981857

RESUMEN

INTRODUCTION: Tau deposition is one of the hallmarks of Alzheimer's disease (AD) and can be visualized and quantified using [18F]THK-5317 together with kinetic modeling. To determine the feasibility of this approach, we measured blood/plasma pharmacokinetics and radiotracer metabolism in female and male rats. METHODS: Female and male rats (n = 11-12) were cannulated via the femoral artery for continuous blood sampling. Blood sampling was performed at regular intervals after intravenous injection of [18F]THK-5317. After collection of the last blood sample, animals were sacrificed, and organs were excised. Blood from minute 5, 20 and 60 was centrifuged to obtain plasma. Radiolabeled metabolites in plasma, brain, liver and urine were analyzed by radio-thin-layer chromatography (radio-TLC). RESULTS: Plasma pharmacokinetics and metabolism were significantly different between female and male rats. [18F]THK-5317 plasma clearance was faster in female (0.66 ± 0.08 mL/h/kg BW) than in male (0.52 ± 0.11 mL/h/kg BW) rats (p = .005). The percentage of unmetabolized parent was significantly different between both sexes at 20 min and 60 min p.i. In the liver, a 1.6-fold higher radioactivity concentration was found in male versus female animals and in addition also the percentage of unmetabolized parent was different. CONCLUSION: Our results show pronounced sex differences in blood/plasma pharmacokinetics and metabolism of [18F]THK-5317 in rats. Female animals showed a faster plasma clearance compared to males. These results underline the importance of investigating both sexes and also support the notion that individual input functions or sex-specific population-based input functions are needed for kinetic modeling analyses. ADVANCES IN KNOWLEDGE: First preclinical study in rats showing pronounced sex differences in blood/plasma pharmacokinetics and metabolism of [18F]THK-5317. IMPLICATIONS FOR PATIENT CARE: Sex-specific differences might also be present in humans and thus clinical trials should have adequate sample size to account for effects in men and women separately.


Asunto(s)
Compuestos de Anilina/farmacocinética , Quinolinas/farmacocinética , Caracteres Sexuales , Enfermedad de Alzheimer/metabolismo , Compuestos de Anilina/sangre , Compuestos de Anilina/metabolismo , Animales , Femenino , Masculino , Quinolinas/sangre , Quinolinas/metabolismo , Trazadores Radiactivos , Ratas , Distribución Tisular , Proteínas tau/metabolismo
16.
PLoS One ; 15(1): e0227077, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31929594

RESUMEN

Gaucher disease is caused by a deficiency in glucocerebrosidase that can result in non-neuronal as well as neuronal symptoms. Common visceral symptoms are an increased organ size, specifically of the spleen, and glucosylceramide as well as glucosylsphingosine substrate accumulations as a direct result of the glucocerebrosidase deficiency. Neuronal symptoms include motor deficits and strong alterations in the cerebellum. To evaluate the effect of new compounds for the treatment of this devastating disease, animal models are needed that closely mimic the human phenotype. The 4L/PS-NA mouse as model of Gaucher disease is shown to present reduced glucocerebrosidase activity similar to human cases but an in-depth characterization of the model was still not performed. We therefore analyzed 4L/PS-NA mice for visceral alterations, motor deficits and also neuronal changes like glucocerebrosidase activity, substrate levels and neuroinflammation. A special focus was set at pathological changes of the cerebellum. Our results show that 4L/PS-NA mice have strongly enlarged visceral organs that are infiltrated by enlarged leukocytes and macrophages. Furthermore, animals present strong motor deficits that are accompanied by increased glucosylceramide and glucosylsphingosine levels in the brain, astrocytosis and activated microglia in the cortex and hippocampus as well as reduced calbindin levels in the cerebellum. The latter was directly related to a strong Purkinje cell loss. Our results thus provide a detailed characterization of the 4L/PS-NA mouse model over age showing the translational value of the model and validating its usefulness for preclinical efficiency studies to evaluate new compounds against Gaucher disease.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedad de Gaucher/genética , Glucosilceramidasa/genética , Fenotipo , Animales , Cerebelo/metabolismo , Cerebelo/patología , Femenino , Enfermedad de Gaucher/metabolismo , Enfermedad de Gaucher/patología , Glucosilceramidasa/metabolismo , Leucocitos/patología , Hígado/metabolismo , Hígado/patología , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Movimiento , Mutación , Neuronas/metabolismo , Neuronas/patología , Bazo/metabolismo , Bazo/patología , Timo/metabolismo , Timo/patología
17.
Front Mol Neurosci ; 13: 617229, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33505246

RESUMEN

Huntington's disease (HD) is caused by an expansion of CAG triplets in the huntingtin gene, leading to severe neuropathological changes that result in a devasting and lethal phenotype. Neurodegeneration in HD begins in the striatum and spreads to other brain regions such as cortex and hippocampus, causing motor and cognitive dysfunctions. To understand the signaling pathways involved in HD, animal models that mimic the human pathology are used. The R6/2 mouse as model of HD was already shown to present major neuropathological changes in the caudate putamen and other brain regions, but recently established biomarkers in HD patients were yet not analyzed in these mice. We therefore performed an in-depth analysis of R6/2 mice to establish new and highly translational readouts focusing on Ctip2 as biological marker for motor system-related neurons and translocator protein (TSPO) as a promising readout for early neuroinflammation. Our results validate already shown pathologies like mutant huntingtin aggregates, ubiquitination, and brain atrophy, but also provide evidence for decreased tyrosine hydroxylase and Ctip2 levels as indicators of a disturbed motor system, while vesicular acetyl choline transporter levels as marker for the cholinergic system barely change. Additionally, increased astrocytosis and activated microglia were observed by GFAP, Iba1 and TSPO labeling, illustrating, that TSPO is a more sensitive marker for early neuroinflammation compared to GFAP and Iba1. Our results thus demonstrate a high sensitivity and translational value of Ctip2 and TSPO as new marker for the preclinical evaluation of new compounds in the R6/2 mouse model of HD.

18.
Heliyon ; 5(3): e01293, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30923761

RESUMEN

Niemann-Pick type C disease (NPC) is a fatal autosomal recessive disorder characterized by a defect in the intracellular transport of lipoproteins leading to the accumulation of lipids in diverse tissues. A visceral and neuronal phenotype mimicking human NPC1 disease has been described in NPC1 mutant mice. These mice are by now the most widely used NPC1 rodent model to study NPC and developmental compounds against this devastating disease. Here we characterized NPC1-/- mice for their hepatic and neuronal phenotype to confirm the stability of the phenotype, provide a characterization of disease progression and pinpoint the age of robust phenotype onset. Animals of 4-10 weeks of age were analyzed for general health, motor deficits as well as hepatic and neuronal alterations with a special focus on cerebellar pathology. Our results show that NPC1-/- mice have a reduced general health at the age of 9-10 weeks. Robust motor deficits can be observed even earlier at 8 weeks of age. Hepatic changes included increased organ weight and cholesterol levels at 6 weeks of age accompanied by severely increased liver enzyme levels. Analysis of NPC1-/- brain pathology showed decreased cholesterol and increased Aß levels in the hippocampus at the age of 6 weeks. Further analysis revealed a decrease of the cytokine IL-12p70 in the cerebellum along with a very early increase of astrocytosis. Hippocampal IL-12p70 levels were increased at the age of 6 weeks followed by increased activated microglia levels. By the age of 10 weeks, also cerebellar Aß levels were increased along with strongly reduced Calbindin D-28k levels. Our results validate and summarize the progressive development of the hepatic and neuronal phenotype of NPC1-/- mice that starts with cerebellar astrocytosis, making this mouse model a valuable tool for the development of new compounds against NPC.

20.
PLoS One ; 13(7): e0200344, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29979789

RESUMEN

It is intriguing that a rare, inherited lysosomal storage disorder Niemann-Pick type C (NPC) shares similarities with Alzheimer's disease (AD). We have previously reported an enhanced processing of ß-amyloid precursor protein (APP) by ß-secretase (BACE1), a key enzyme in the pathogenesis of AD, in NPC1-null cells. In this work, we characterized regional and temporal expression and processing of the recently identified BACE1 substrates seizure protein 6 (Sez6) and seizure 6-like protein (Sez6L), and APP, in NPC1-/- (NPC1) and NPC1+/+ (wt) mouse brains. We analysed 4-weeks old brains to detect the earliest changes associated with NPC, and 10-weeks of age to identify changes at terminal disease stage. Sez6 and Sez6L were selected due to their predominant cleavage by BACE1, and their potential role in synaptic function that may contribute to presentation of seizures and/or motor impairments in NPC patients. While an enhanced BACE1-cleavage of all three substrates was detected in NPC1 vs. wt-mouse brains at 4-weeks of age, at 10-weeks increased proteolysis by BACE1 was observed for Sez6L in the cortex, hippocampus and cerebellum of NPC1-mice. Interestingly, both APP and Sez6L were found to be expressed in Purkinje neurons and their immunostaining was lost upon Purkinje cell neurodegeneration in 10-weeks old NPC1 mice. Furthermore, in NPC1- vs. wt-mouse primary cortical neurons, both Sez6 and Sez6L showed increased punctuate staining within the endolysosomal pathway as well as increased Sez6L and BACE1-positive puncta. This indicates that a trafficking defect within the endolysosomal pathway may play a key role in enhanced BACE1-proteolysis in NPC disease. Overall, our findings suggest that enhanced proteolysis by BACE1 could be a part of NPC disease pathogenesis. Understanding the basic biology of BACE1 and the functional impact of cleavage of its substrates is important to better evaluate the therapeutic potential of BACE1 against AD and, possibly, NPC disease.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Encéfalo/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Enfermedad de Niemann-Pick Tipo C/metabolismo , Animales , Encéfalo/crecimiento & desarrollo , Encéfalo/patología , Modelos Animales de Enfermedad , Péptidos y Proteínas de Señalización Intracelular , Ratones Endogámicos BALB C , Ratones Noqueados , Neuronas/metabolismo , Neuronas/patología , Proteína Niemann-Pick C1 , Enfermedad de Niemann-Pick Tipo C/patología , Proteínas/genética , Proteínas/metabolismo , Proteolisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA