Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS Pathog ; 20(6): e1012360, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38935780

RESUMEN

The cGMP-dependent protein kinase (PKG) is the sole cGMP sensor in malaria parasites, acting as an essential signalling hub to govern key developmental processes throughout the parasite life cycle. Despite the importance of PKG in the clinically relevant asexual blood stages, many aspects of malarial PKG regulation, including the importance of phosphorylation, remain poorly understood. Here we use genetic and biochemical approaches to show that reduced cGMP binding to cyclic nucleotide binding domain B does not affect in vitro kinase activity but prevents parasite egress. Similarly, we show that phosphorylation of a key threonine residue (T695) in the activation loop is dispensable for kinase activity in vitro but is essential for in vivo PKG function, with loss of T695 phosphorylation leading to aberrant phosphorylation events across the parasite proteome and changes to the substrate specificity of PKG. Our findings indicate that Plasmodium PKG is uniquely regulated to transduce signals crucial for malaria parasite development.


Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico , GMP Cíclico , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/genética , Fosforilación , GMP Cíclico/metabolismo , Malaria/parasitología , Malaria/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Animales , Plasmodium falciparum/metabolismo , Plasmodium falciparum/genética , Humanos , Transducción de Señal , Eritrocitos/parasitología , Eritrocitos/metabolismo
3.
Front Mol Neurosci ; 17: 1359154, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638602

RESUMEN

A large number of synaptic proteins have been recurrently associated with complex brain disorders. One of these proteins, the Traf and Nck interacting kinase (TNIK), is a postsynaptic density (PSD) signaling hub, with many variants reported in neurodevelopmental disorder (NDD) and psychiatric disease. While rodent models of TNIK dysfunction have abnormal spontaneous synaptic activity and cognitive impairment, the role of mutations found in patients with TNIK protein deficiency and TNIK protein kinase activity during early stages of neuronal and synapse development has not been characterized. Here, using hiPSC-derived excitatory neurons, we show that TNIK mutations dysregulate neuronal activity in human immature synapses. Moreover, the lack of TNIK protein kinase activity impairs MAPK signaling and protein phosphorylation in structural components of the PSD. We show that the TNIK interactome is enriched in NDD risk factors and TNIK lack of function disrupts signaling networks and protein interactors associated with NDD that only partially overlap to mature mouse synapses, suggesting a differential role of TNIK in immature synapsis in NDD.

4.
Nature ; 627(8004): 671-679, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38448585

RESUMEN

DNA and histone modifications combine into characteristic patterns that demarcate functional regions of the genome1,2. While many 'readers' of individual modifications have been described3-5, how chromatin states comprising composite modification signatures, histone variants and internucleosomal linker DNA are interpreted is a major open question. Here we use a multidimensional proteomics strategy to systematically examine the interaction of around 2,000 nuclear proteins with over 80 modified dinucleosomes representing promoter, enhancer and heterochromatin states. By deconvoluting complex nucleosome-binding profiles into networks of co-regulated proteins and distinct nucleosomal features driving protein recruitment or exclusion, we show comprehensively how chromatin states are decoded by chromatin readers. We find highly distinctive binding responses to different features, many factors that recognize multiple features, and that nucleosomal modifications and linker DNA operate largely independently in regulating protein binding to chromatin. Our online resource, the Modification Atlas of Regulation by Chromatin States (MARCS), provides in-depth analysis tools to engage with our results and advance the discovery of fundamental principles of genome regulation by chromatin states.


Asunto(s)
Ensamble y Desensamble de Cromatina , Cromatina , Proteínas Nucleares , Nucleosomas , Proteómica , Humanos , Sitios de Unión , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , ADN/genética , ADN/metabolismo , Elementos de Facilitación Genéticos , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/metabolismo , Proteínas Nucleares/análisis , Proteínas Nucleares/metabolismo , Nucleosomas/química , Nucleosomas/genética , Nucleosomas/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Proteómica/métodos
5.
Sci Transl Med ; 16(731): eadd6883, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38266108

RESUMEN

Down syndrome (DS) is caused by trisomy of human chromosome 21 (Hsa21). DS is a gene dosage disorder that results in multiple phenotypes including congenital heart defects. This clinically important cardiac pathology is the result of a third copy of one or more of the approximately 230 genes on Hsa21, but the identity of the causative dosage-sensitive genes and hence mechanisms underlying this cardiac pathology remain unclear. Here, we show that hearts from human fetuses with DS and embryonic hearts from the Dp1Tyb mouse model of DS show reduced expression of mitochondrial respiration genes and cell proliferation genes. Using systematic genetic mapping, we determined that three copies of the dual-specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1a) gene, encoding a serine/threonine protein kinase, are associated with congenital heart disease pathology. In embryos from Dp1Tyb mice, reducing Dyrk1a gene copy number from three to two reversed defects in cellular proliferation and mitochondrial respiration in cardiomyocytes and rescued heart septation defects. Increased dosage of DYRK1A protein resulted in impairment of mitochondrial function and congenital heart disease pathology in mice with DS, suggesting that DYRK1A may be a useful therapeutic target for treating this common human condition.


Asunto(s)
Síndrome de Down , Cardiopatías Congénitas , Animales , Humanos , Ratones , Modelos Animales de Enfermedad , Síndrome de Down/genética , Genes Mitocondriales , Cardiopatías Congénitas/genética , Miocitos Cardíacos , Trisomía
6.
J Phys Chem A ; 128(4): 785-791, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38236752

RESUMEN

Acidic azo dyes are widely used for their vibrant colors. However, if their photophysics were better understood and controllable, they could be integrated into many more applications such as photosensing, photomedicine, and nonlinear optics. Here, the proton-controlled photophysics of a widely used acid, hydrazo dye, acid violet 3 (AV3) is explored. Density functional theory is used to predict the ground- and excited-state potential energy surfaces, and the proposed photoisomerization mechanism is confirmed with spectroscopic experiments. The ground-state and first two excited-state surfaces of the three readily accessible protonation states, AV3-H, AV3, and AV3+H, are investigated along both the dihedral rotation and inversion coordinates. The deprotonated AV3-H undergoes photoisomerization with blue light (λex = 453 nm) through a dihedral rotation mechanism. Upon the formation of the cis-isomer, the reversion of AV3-H is predicted to occur through a mixed rotational and inversion mechanism. In contrast, AV3 and its protonated form, AV3+H, do not undergo photoisomerization because there is no driving force for either the rotation or inversion of the azo bond in the excited state. In addition, when the azo bond is acidic, the ground-state dihedral rotation reversion mechanism barrier is lower. The mechanistic insights gained here through the combination of theory and experiment provide a roadmap to control the reactivity of AV3 across 11 orders of magnitude of proton concentration, making them interesting candidates for a range of pharmaceuticals.

7.
Nat Biomed Eng ; 8(3): 233-247, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37474612

RESUMEN

Protein glycosylation, a complex and heterogeneous post-translational modification that is frequently dysregulated in disease, has been difficult to analyse at scale. Here we report a data-independent acquisition technique for the large-scale mass-spectrometric quantification of glycopeptides in plasma samples. The technique, which we named 'OxoScan-MS', identifies oxonium ions as glycopeptide fragments and exploits a sliding-quadrupole dimension to generate comprehensive and untargeted oxonium ion maps of precursor masses assigned to fragment ions from non-enriched plasma samples. By applying OxoScan-MS to quantify 1,002 glycopeptide features in the plasma glycoproteomes from patients with COVID-19 and healthy controls, we found that severe COVID-19 induces differential glycosylation in IgA, haptoglobin, transferrin and other disease-relevant plasma glycoproteins. OxoScan-MS may allow for the quantitative mapping of glycoproteomes at the scale of hundreds to thousands of samples.


Asunto(s)
COVID-19 , Glicopéptidos , Humanos , Espectrometría de Masas , Glicosilación , Glicopéptidos/análisis , Glicopéptidos/química , Glicopéptidos/metabolismo , Iones
8.
Nat Commun ; 14(1): 5496, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37679383

RESUMEN

PGC-1α plays a central role in maintaining mitochondrial and energy metabolism homeostasis, linking external stimuli to transcriptional co-activation of genes involved in adaptive and age-related pathways. The carboxyl-terminus encodes a serine/arginine-rich (RS) region and an RNA recognition motif, however the RNA-processing function(s) were poorly investigated over the past 20 years. Here, we show that the RS domain of human PGC-1α directly interacts with RNA and the nuclear RNA export receptor NXF1. Inducible depletion of PGC-1α and expression of RNAi-resistant RS-deleted PGC-1α further demonstrate that its RNA/NXF1-binding activity is required for the nuclear export of some canonical mitochondrial-related mRNAs and mitochondrial homeostasis. Genome-wide investigations reveal that the nuclear export function is not strictly linked to promoter-binding, identifying in turn novel regulatory targets of PGC-1α in non-homologous end-joining and nucleocytoplasmic transport. These findings provide new directions to further elucidate the roles of PGC-1α in gene expression, metabolic disorders, aging and neurodegeneration.


Asunto(s)
Transporte de ARN , ARN , Humanos , Transporte Activo de Núcleo Celular , Expresión Génica , Homeostasis
9.
STAR Protoc ; 4(1): 101974, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36633947

RESUMEN

Despite the known disease relevance of glycans, the biological function and substrate specificities of individual glycosyltransferases are often ill-defined. Here, we describe a protocol to develop chemical, bioorthogonal reporters for the activity of the GalNAc-T family of glycosyltransferases using a tactic termed bump-and-hole engineering. This allows identification of the protein substrates and glycosylation sites of single GalNAc-Ts. Despite requiring transfection of cells with the engineered transferases and enzymes for biosynthesis of bioorthogonal substrates, the tactic complements methods in molecular biology. For complete details on the use and execution of this protocol, please refer to Schumann et al. (2020)1, Cioce et al. (2021)2, and Cioce et al. (2022)3.


Asunto(s)
N-Acetilgalactosaminiltransferasas , Proteínas , Humanos , Glicosilación , Proteínas/metabolismo , Péptidos/química , Polisacáridos/química , N-Acetilgalactosaminiltransferasas/genética , N-Acetilgalactosaminiltransferasas/química , N-Acetilgalactosaminiltransferasas/metabolismo
10.
Life Sci Alliance ; 6(2)2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36446521

RESUMEN

Autophagy is essential for neuronal development and its deregulation contributes to neurodegenerative diseases. NDR1 and NDR2 are highly conserved kinases, implicated in neuronal development, mitochondrial health and autophagy, but how they affect mammalian brain development in vivo is not known. Using single and double Ndr1/2 knockout mouse models, we show that only dual loss of Ndr1/2 in neurons causes neurodegeneration. This phenotype was present when NDR kinases were deleted both during embryonic development, as well as in adult mice. Proteomic and phosphoproteomic comparisons between Ndr1/2 knockout and control brains revealed novel kinase substrates and indicated that endocytosis is significantly affected in the absence of NDR1/2. We validated the endocytic protein Raph1/Lpd1, as a novel NDR1/2 substrate, and showed that both NDR1/2 and Raph1 are critical for endocytosis and membrane recycling. In NDR1/2 knockout brains, we observed prominent accumulation of transferrin receptor, p62 and ubiquitinated proteins, indicative of a major impairment of protein homeostasis. Furthermore, the levels of LC3-positive autophagosomes were reduced in knockout neurons, implying that reduced autophagy efficiency mediates p62 accumulation and neurotoxicity. Mechanistically, pronounced mislocalisation of the transmembrane autophagy protein ATG9A at the neuronal periphery, impaired axonal ATG9A trafficking and increased ATG9A surface levels further confirm defects in membrane trafficking, and could underlie the impairment in autophagy. We provide novel insight into the roles of NDR1/2 kinases in maintaining neuronal health.


Asunto(s)
Autofagia , Proteómica , Femenino , Embarazo , Animales , Ratones , Autofagosomas , Neuronas , Proteostasis , Proteínas de la Membrana/genética , Mamíferos
11.
PLoS Pathog ; 18(10): e1010901, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36265000

RESUMEN

Fundamental processes that govern the lytic cycle of the intracellular parasite Toxoplasma gondii are regulated by several signalling pathways. However, how these pathways are connected remains largely unknown. Here, we compare the phospho-signalling networks during Toxoplasma egress from its host cell by artificially raising cGMP or calcium levels. We show that both egress inducers trigger indistinguishable signalling responses and provide evidence for a positive feedback loop linking calcium and cyclic nucleotide signalling. Using WT and conditional knockout parasites of the non-essential calcium-dependent protein kinase 3 (CDPK3), which display a delay in calcium inonophore-mediated egress, we explore changes in phosphorylation and lipid signalling in sub-minute timecourses after inducing Ca2+ release. These studies indicate that cAMP and lipid metabolism are central to the feedback loop, which is partly dependent on CDPK3 and allows the parasite to respond faster to inducers of egress. Biochemical analysis of 4 phosphodiesterases (PDEs) identified in our phosphoproteomes establishes PDE2 as a cAMP-specific PDE which regulates Ca2+ induced egress in a CDPK3-independent manner. The other PDEs display dual hydrolytic activity and play no role in Ca2+ induced egress. In summary, we uncover a positive feedback loop that enhances signalling during egress, thereby linking several signalling pathways.


Asunto(s)
Toxoplasma , Toxoplasma/metabolismo , Calcio/metabolismo , Nucleótidos Cíclicos/metabolismo , Retroalimentación , Lípidos
12.
Nat Commun ; 13(1): 6237, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36284108

RESUMEN

Altered glycoprotein expression is an undisputed corollary of cancer development. Understanding these alterations is paramount but hampered by limitations underlying cellular model systems. For instance, the intricate interactions between tumour and host cannot be adequately recapitulated in monoculture of tumour-derived cell lines. More complex co-culture models usually rely on sorting procedures for proteome analyses and rarely capture the details of protein glycosylation. Here, we report a strategy termed Bio-Orthogonal Cell line-specific Tagging of Glycoproteins (BOCTAG). Cells are equipped by transfection with an artificial biosynthetic pathway that transforms bioorthogonally tagged sugars into the corresponding nucleotide-sugars. Only transfected cells incorporate bioorthogonal tags into glycoproteins in the presence of non-transfected cells. We employ BOCTAG as an imaging technique and to annotate cell-specific glycosylation sites in mass spectrometry-glycoproteomics. We demonstrate application in co-culture and mouse models, allowing for profiling of the glycoproteome as an important modulator of cellular function.


Asunto(s)
Proteoma , Proteómica , Ratones , Animales , Proteómica/métodos , Glicoproteínas/metabolismo , Azúcares , Nucleótidos
13.
Proc Natl Acad Sci U S A ; 119(32): e2201483119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35930668

RESUMEN

The Jumonji domain-containing protein JMJD6 is a 2-oxoglutarate-dependent dioxygenase associated with a broad range of biological functions. Cellular studies have implicated the enzyme in chromatin biology, transcription, DNA repair, mRNA splicing, and cotranscriptional processing. Although not all studies agree, JMJD6 has been reported to catalyze both hydroxylation of lysine residues and demethylation of arginine residues. However, despite extensive study and indirect evidence for JMJD6 catalysis in many cellular processes, direct assignment of JMJD6 catalytic substrates has been limited. Examination of a reported site of proline hydroxylation within a lysine-rich region of the tandem bromodomain protein BRD4 led us to conclude that hydroxylation was in fact on lysine and catalyzed by JMJD6. This prompted a wider search for JMJD6-catalyzed protein modifications deploying mass spectrometric methods designed to improve the analysis of such lysine-rich regions. Using lysine derivatization with propionic anhydride to improve the analysis of tryptic peptides and nontryptic proteolysis, we report 150 sites of JMJD6-catalyzed lysine hydroxylation on 48 protein substrates, including 19 sites of hydroxylation on BRD4. Most hydroxylations were within lysine-rich regions that are predicted to be unstructured; in some, multiple modifications were observed on adjacent lysine residues. Almost all of the JMJD6 substrates defined in these studies have been associated with membraneless organelle formation. Given the reported roles of lysine-rich regions in subcellular partitioning by liquid-liquid phase separation, our findings raise the possibility that JMJD6 may play a role in regulating such processes in response to stresses, including hypoxia.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Histona Demetilasas con Dominio de Jumonji , Proteínas de Ciclo Celular/metabolismo , Humanos , Hidroxilación , Proteínas Intrínsecamente Desordenadas/metabolismo , Histona Demetilasas con Dominio de Jumonji/química , Histona Demetilasas con Dominio de Jumonji/metabolismo , Lisina/metabolismo , Dominios Proteicos , Factores de Transcripción/metabolismo
14.
Res Sq ; 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34580668

RESUMEN

Patients with cancer have higher COVID-19 morbidity and mortality. Here we present the prospective CAPTURE study (NCT03226886) integrating longitudinal immune profiling with clinical annotation. Of 357 patients with cancer, 118 were SARS-CoV-2-positive, 94 were symptomatic and 2 patients died of COVID-19. In this cohort, 83% patients had S1-reactive antibodies, 82% had neutralizing antibodies against WT, whereas neutralizing antibody titers (NAbT) against the Alpha, Beta, and Delta variants were substantially reduced. Whereas S1-reactive antibody levels decreased in 13% of patients, NAbT remained stable up to 329 days. Patients also had detectable SARS-CoV-2-specific T cells and CD4+ responses correlating with S1-reactive antibody levels, although patients with hematological malignancies had impaired immune responses that were disease and treatment-specific, but presented compensatory cellular responses, further supported by clinical. Overall, these findings advance the understanding of the nature and duration of immune response to SARS-CoV-2 in patients with cancer.

15.
EMBO J ; 40(14): e105985, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34121209

RESUMEN

Autophagy is a process through which intracellular cargoes are catabolised inside lysosomes. It involves the formation of autophagosomes initiated by the serine/threonine kinase ULK and class III PI3 kinase VPS34 complexes. Here, unbiased phosphoproteomics screens in mouse embryonic fibroblasts deleted for Ulk1/2 reveal that ULK loss significantly alters the phosphoproteome, with novel high confidence substrates identified including VPS34 complex member VPS15 and AMPK complex subunit PRKAG2. We identify six ULK-dependent phosphorylation sites on VPS15, mutation of which reduces autophagosome formation in cells and VPS34 activity in vitro. Mutation of serine 861, the major VPS15 phosphosite, decreases both autophagy initiation and autophagic flux. Analysis of VPS15 knockout cells reveals two novel ULK-dependent phenotypes downstream of VPS15 removal that can be partially recapitulated by chronic VPS34 inhibition, starvation-independent accumulation of ULK substrates and kinase activity-regulated recruitment of autophagy proteins to ubiquitin-positive structures.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Autofagia/fisiología , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Proteína de Clasificación Vacuolar VPS15/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Autofagosomas/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Fibroblastos/metabolismo , Células HEK293 , Humanos , Ratones , Proteómica/métodos
16.
Sci Adv ; 7(23)2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34088668

RESUMEN

Two models have been put forward for cyclin-dependent kinase (Cdk) control of the cell cycle. In the qualitative model, cell cycle events are ordered by distinct substrate specificities of successive cyclin waves. Alternatively, in the quantitative model, the gradual rise of Cdk activity from G1 phase to mitosis leads to ordered substrate phosphorylation at sequential thresholds. Here, we study the relative contributions of qualitative and quantitative Cdk control in Saccharomyces cerevisiae All S phase and mitotic cyclins can be replaced by a single mitotic cyclin, albeit at the cost of reduced fitness. A single cyclin can also replace all G1 cyclins to support ordered cell cycle progression, fulfilling key predictions of the quantitative model. However, single-cyclin cells fail to polarize or grow buds and thus cannot survive. Our results suggest that budding yeast has become dependent on G1 cyclin specificity to couple cell cycle progression to essential morphogenetic events.

17.
J Am Soc Mass Spectrom ; 32(9): 2366-2375, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-33871988

RESUMEN

Mucin-type O-glycosylation is among the most complex post-translational modifications. Despite mediating many physiological processes, O-glycosylation remains understudied compared to other modifications, simply because the right analytical tools are lacking. In particular, analysis of intact O-glycopeptides by mass spectrometry is challenging for several reasons; O-glycosylation lacks a consensus motif, glycopeptides have low charge density which impairs ETD fragmentation, and the glycan structures modifying the peptides are unpredictable. Recently, we introduced chemically modified monosaccharide analogues that allowed selective tracking and characterization of mucin-type O-glycans after bioorthogonal derivatization with biotin-based enrichment handles. In doing so, we realized that the chemical modifications used in these studies have additional benefits that allow for improved analysis by tandem mass spectrometry. In this work, we built on this discovery by generating a series of new GalNAc analogue glycopeptides. We characterized the mass spectrometric signatures of these modified glycopeptides and their signature residues left by bioorthogonal reporter reagents. Our data indicate that chemical methods for glycopeptide profiling offer opportunities to optimize attributes such as increased charge state, higher charge density, and predictable fragmentation behavior.


Asunto(s)
Química Clic/métodos , Glicopéptidos , Azúcares , Glicopéptidos/análisis , Glicopéptidos/síntesis química , Glicopéptidos/química , Glicosilación , Mucinas/química , Procesamiento Proteico-Postraduccional , Proteómica , Azúcares/análisis , Azúcares/química , Espectrometría de Masas en Tándem
18.
EMBO J ; 40(10): e106188, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33881780

RESUMEN

Tumour progression locus 2 (TPL-2) kinase mediates Toll-like receptor (TLR) activation of ERK1/2 and p38α MAP kinases in myeloid cells to modulate expression of key cytokines in innate immunity. This study identified a novel MAP kinase-independent regulatory function for TPL-2 in phagosome maturation, an essential process for killing of phagocytosed microbes. TPL-2 catalytic activity was demonstrated to induce phagosome acidification and proteolysis in primary mouse and human macrophages following uptake of latex beads. Quantitative proteomics revealed that blocking TPL-2 catalytic activity significantly altered the protein composition of phagosomes, particularly reducing the abundance of V-ATPase proton pump subunits. Furthermore, TPL-2 stimulated the phosphorylation of DMXL1, a regulator of V-ATPases, to induce V-ATPase assembly and phagosome acidification. Consistent with these results, TPL-2 catalytic activity was required for phagosome acidification and the efficient killing of Staphylococcus aureus and Citrobacter rodentium following phagocytic uptake by macrophages. TPL-2 therefore controls innate immune responses of macrophages to bacteria via V-ATPase induction of phagosome maturation.


Asunto(s)
Macrófagos/metabolismo , Fagosomas/metabolismo , Animales , Humanos , Quinasas Quinasa Quinasa PAM/metabolismo , Fosforilación/fisiología , Proteínas/metabolismo , Transducción de Señal/fisiología , Staphylococcus aureus/metabolismo
19.
Sci Adv ; 7(13)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33762339

RESUMEN

Calcium signaling regulated by the cGMP-dependent protein kinase (PKG) controls key life cycle transitions in the malaria parasite. However, how calcium is mobilized from intracellular stores in the absence of canonical calcium channels in Plasmodium is unknown. Here, we identify a multipass membrane protein, ICM1, with homology to transporters and calcium channels that is tightly associated with PKG in both asexual blood stages and transmission stages. Phosphoproteomic analyses reveal multiple ICM1 phosphorylation events dependent on PKG activity. Stage-specific depletion of Plasmodium berghei ICM1 prevents gametogenesis due to a block in intracellular calcium mobilization, while conditional loss of Plasmodium falciparum ICM1 is detrimental for the parasite resulting in severely reduced calcium mobilization, defective egress, and lack of invasion. Our findings suggest that ICM1 is a key missing link in transducing PKG-dependent signals and provide previously unknown insights into atypical calcium homeostasis in malaria parasites essential for pathology and disease transmission.


Asunto(s)
Malaria , Parásitos , Animales , Calcio/metabolismo , Canales de Calcio , Gametogénesis , Malaria/parasitología , Proteínas de la Membrana/metabolismo , Plasmodium berghei/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
20.
Nat Cancer ; 2(12): 1321-1337, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-35121900

RESUMEN

Patients with cancer have higher COVID-19 morbidity and mortality. Here we present the prospective CAPTURE study, integrating longitudinal immune profiling with clinical annotation. Of 357 patients with cancer, 118 were SARS-CoV-2 positive, 94 were symptomatic and 2 died of COVID-19. In this cohort, 83% patients had S1-reactive antibodies and 82% had neutralizing antibodies against wild type SARS-CoV-2, whereas neutralizing antibody titers against the Alpha, Beta and Delta variants were substantially reduced. S1-reactive antibody levels decreased in 13% of patients, whereas neutralizing antibody titers remained stable for up to 329 days. Patients also had detectable SARS-CoV-2-specific T cells and CD4+ responses correlating with S1-reactive antibody levels, although patients with hematological malignancies had impaired immune responses that were disease and treatment specific, but presented compensatory cellular responses, further supported by clinical recovery in all but one patient. Overall, these findings advance the understanding of the nature and duration of the immune response to SARS-CoV-2 in patients with cancer.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , COVID-19/inmunología , Neoplasias/complicaciones , Linfocitos T/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/sangre , COVID-19/mortalidad , Femenino , Estudios de Seguimiento , Humanos , Inmunidad Celular , Masculino , Persona de Mediana Edad , Neoplasias/sangre , Neoplasias/inmunología , Estudios Prospectivos , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...