Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
FEBS Lett ; 597(14): 1818-1836, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37191774

RESUMEN

The telomeric repeat-containing RNA, TERRA, associates with both telomeric DNA and telomeric proteins, often forming RNA:DNA hybrids (R-loops). TERRA is most abundant in cancer cells utilizing the alternative lengthening of telomeres (ALT) pathway for telomere maintenance, suggesting that persistent TERRA R-loops may contribute to activation of the ALT mechanism. Therefore, we sought to identify the enzyme(s) that regulate TERRA metabolism in mammalian cells. Here, we identify that the 5'-3' exoribonuclease XRN2 regulates the stability of TERRA RNA. Moreover, while stabilization of TERRA alone was insufficient to drive ALT, depletion of XRN2 in ALT-positive cells led to a significant increase in TERRA R-loops and exacerbated ALT activity. Together, our findings highlight XRN2 as a key determinant of TERRA metabolism and telomere stability in cancer cells that rely on the ALT pathway.


Asunto(s)
ARN Largo no Codificante , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Exorribonucleasas/genética , Telómero/genética , Telómero/metabolismo , Homeostasis del Telómero , ADN , ARN/genética
2.
EMBO Rep ; 21(6): e49495, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32337843

RESUMEN

Cancer cells can activate the alternative lengthening of telomeres (ALT) pathway to promote replicative immortality. The ALT pathway promotes telomere elongation through a homologous recombination pathway known as break-induced replication (BIR), which is often engaged to repair single-ended double-stranded breaks (DSBs). Single-ended DSBs are resected to promote strand invasion and facilitate the formation of a local displacement loop (D-loop), which can trigger DNA synthesis, and ultimately promote telomere elongation. However, the exact proteins involved in the maturation, migration, and resolution of D-loops at ALT telomeres are unclear. In vitro, the DNA translocase RAD54 both binds D-loops and promotes branch migration suggesting that RAD54 may function to promote ALT activity. Here, we demonstrate that RAD54 is enriched at ALT telomeres and promotes telomeric DNA synthesis through its ATPase-dependent branch migration activity. Loss of RAD54 leads to the formation of unresolved recombination intermediates at telomeres that form ultra-fine anaphase bridges in mitosis. These data demonstrate an important role for RAD54 in promoting ALT-mediated telomere synthesis.


Asunto(s)
Homeostasis del Telómero , Telómero , ADN Polimerasa III/genética , Reparación del ADN , Replicación del ADN , Telómero/genética , Telómero/metabolismo
3.
Methods Mol Biol ; 1999: 31-57, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31127568

RESUMEN

The maintenance of genome stability in eukaryotic cells relies on accurate and efficient replication along each chromosome following every cell division. The terminal position, repetitive sequence, and structural complexities of the telomeric DNA make the telomere an inherently difficult region to replicate within the genome. Thus, despite functioning to protect genome stability mammalian telomeres are also a source of replication stress and have been recognized as common fragile sites within the genome. Telomere fragility is exacerbated at telomeres that rely on the Alternative Lengthening of Telomeres (ALT) pathway. Like common fragile sites, ALT telomeres are prone to chromosome breaks and are frequent sites of recombination suggesting that ALT telomeres are subjected to chronic replication stress. Here, we will review the features of telomeric DNA that challenge the replication machinery and also how the cell overcomes these challenges to maintain telomere stability and ensure the faithful duplication of the human genome.


Asunto(s)
Replicación del ADN , ADN/metabolismo , Telomerasa/metabolismo , Homeostasis del Telómero/genética , Telómero/metabolismo , Daño del ADN/genética , G-Cuádruplex , Genoma Humano , Inestabilidad Genómica , Humanos
4.
Methods Mol Biol ; 1999: 319-325, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31127588

RESUMEN

The ability to analyze individual DNA fibers undergoing active DNA synthesis has emerged as a powerful technique in the field of DNA replication. Much of the initial analysis has focused on replication throughout the genome. However, more recent advancements in this technique have allowed for the visualization of replication patterns at distinct loci or regions within the genome. This type of locus-specific resolution will greatly enhance our understanding of the dynamics of DNA replication in regions that provide a challenge to the replication machinery. Here, we describe a protocol that will allow for the visualization of DNA replication through one of the most structurally complex regions in the human genome, the telomeric DNA.


Asunto(s)
Replicación del ADN , ADN/genética , Hibridación Fluorescente in Situ/métodos , Imagen Molecular/métodos , Telómero/metabolismo , Línea Celular , ADN/química , Desoxiuridina/análogos & derivados , Desoxiuridina/química , Técnica del Anticuerpo Fluorescente Directa/métodos , Sitios Genéticos , Humanos , Idoxuridina/química , Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos , Imagen Molecular/instrumentación , Sondas Moleculares/química , Coloración y Etiquetado/métodos
5.
Oncotarget ; 9(67): 32868-32880, 2018 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-30214690

RESUMEN

The Alternative Lengthening of Telomeres (ALT) pathway stimulates telomere elongation and prevents cellular senescence in approximately 60% of osteosarcoma. While the precise mechanism underlying activation of the ALT pathway is unclear, mutations in the chromatin remodeling protein ATRX, histone chaperone DAXX, and the histone variant H3.3 correlate with ALT status. ATRX and DAXX facilitate deposition of the histone variant H3.3 within heterochromatic regions suggesting that loss of ATRX, DAXX, and/or H3.3 lead to defects in the stability of telomeric heterochromatin. Genetic mutations in ATRX, DAXX, and H3.3 have been detected in ALT positive cancers, however, a subset of ALT samples show loss of ATRX or DAXX protein expression or localization without evidence of genetic alterations suggesting additional uncharacterized defects in ATRX/DAXX/H3.3 function. Here, using Next Generation Sequencing we identified a novel gene fusion event between DAXX and the kinesin motor protein, KIFC3, leading to the translation of a chimeric DAXX-KIFC3 fusion protein. Moreover, we demonstrate that the fusion of KIFC3 to DAXX causes defects in DAXX function likely promoting ALT activity. These data highlight a potentially unrecognized mechanism of DAXX inactivation in ALT positive osteosarcoma and provide rationale for thorough and comprehensive analyses of ATRX/DAXX/H3.3 proteins in ALT positive cancers.

6.
Cell Rep ; 14(5): 1032-1040, 2016 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-26832416

RESUMEN

Cancer cells overcome replicative senescence by exploiting mechanisms of telomere elongation, a process often accomplished by reactivation of the enzyme telomerase. However, a subset of cancer cells lack telomerase activity and rely on the alternative lengthening of telomeres (ALT) pathway, a recombination-based mechanism of telomere elongation. Although the mechanisms regulating ALT are not fully defined, chronic replication stress at telomeres might prime these fragile regions for recombination. Here, we demonstrate that the replication stress response protein SMARCAL1 is a critical regulator of ALT activity. SMARCAL1 associates with ALT telomeres to resolve replication stress and ensure telomere stability. In the absence of SMARCAL1, persistently stalled replication forks at ALT telomeres deteriorate into DNA double-strand breaks promoting the formation of chromosome fusions. Our studies not only define a role for SMARCAL1 in ALT telomere maintenance, but also demonstrate that resolution of replication stress is a crucial step in the ALT mechanism.


Asunto(s)
Senescencia Celular , ADN Helicasas/metabolismo , Estrés Fisiológico , Homeostasis del Telómero , Telómero/metabolismo , Línea Celular Tumoral , Aberraciones Cromosómicas , Roturas del ADN de Doble Cadena , Humanos , Recombinasa Rad51/metabolismo
7.
Science ; 347(6219): 273-7, 2015 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-25593184

RESUMEN

Cancer cells rely on telomerase or the alternative lengthening of telomeres (ALT) pathway to overcome replicative mortality. ALT is mediated by recombination and is prevalent in a subset of human cancers, yet whether it can be exploited therapeutically remains unknown. Loss of the chromatin-remodeling protein ATRX associates with ALT in cancers. Here, we show that ATRX loss compromises cell-cycle regulation of the telomeric noncoding RNA TERRA and leads to persistent association of replication protein A (RPA) with telomeres after DNA replication, creating a recombinogenic nucleoprotein structure. Inhibition of the protein kinase ATR, a critical regulator of recombination recruited by RPA, disrupts ALT and triggers chromosome fragmentation and apoptosis in ALT cells. The cell death induced by ATR inhibitors is highly selective for cancer cells that rely on ALT, suggesting that such inhibitors may be useful for treatment of ALT-positive cancers.


Asunto(s)
Antineoplásicos/farmacología , Pirazinas/farmacología , Sulfonas/farmacología , Homeostasis del Telómero , Telómero/efectos de los fármacos , Telómero/metabolismo , Apoptosis , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Ciclo Celular , Línea Celular Tumoral , ADN Helicasas/genética , ADN Helicasas/metabolismo , Técnicas de Silenciamiento del Gen , Glioma/tratamiento farmacológico , Glioma/genética , Células HeLa , Recombinación Homóloga , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/genética , Proteína de la Leucemia Promielocítica , ARN no Traducido/genética , ARN no Traducido/metabolismo , Proteína de Replicación A/metabolismo , Telomerasa/metabolismo , Telómero/genética , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteína Nuclear Ligada al Cromosoma X
8.
Cell Cycle ; 11(4): 652-7, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22373525

RESUMEN

Telomere maintenance in cycling cells relies on both DNA replication and capping by the protein complex shelterin. Two single-stranded DNA (ssDNA)-binding proteins, replication protein A (RPA) and protection of telomere 1 (POT1) play critical roles in DNA replication and telomere capping, respectively. While RPA binds to ssDNA in a non-sequence-specific manner, POT1 specifically recognizes singlestranded TTAGGG telomeric repeats. Loss of POT1 leads to aberrant accumulation of RPA at telomeres and activation of the ataxia telangiectasia and Rad3-related kinase (ATR)-mediated checkpoint response, suggesting that POT1 antagonizes RPA binding to telomeric ssDNA. The requirement for both POT1 and RPA in telomere maintenance and the antagonism between the two proteins raises the important question of how they function in concert on telomeric ssDNA. Two interesting models were proposed by recent studies to explain the regulation of POT1 and RPA at telomeres. Here, we discuss how these models help unravel the coordination, and also the antagonism, between POT1 and RPA during the cell cycle.


Asunto(s)
Proteína de Replicación A/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Telómero/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada , Ciclo Celular/genética , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Humanos , Modelos Biológicos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína de Replicación A/genética , Complejo Shelterina , Telómero/genética , Proteínas de Unión a Telómeros/genética
9.
Nature ; 471(7339): 532-6, 2011 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-21399625

RESUMEN

Maintenance of telomeres requires both DNA replication and telomere 'capping' by shelterin. These two processes use two single-stranded DNA (ssDNA)-binding proteins, replication protein A (RPA) and protection of telomeres 1 (POT1). Although RPA and POT1 each have a critical role at telomeres, how they function in concert is not clear. POT1 ablation leads to activation of the ataxia telangiectasia and Rad3-related (ATR) checkpoint kinase at telomeres, suggesting that POT1 antagonizes RPA binding to telomeric ssDNA. Unexpectedly, we found that purified POT1 and its functional partner TPP1 are unable to prevent RPA binding to telomeric ssDNA efficiently. In cell extracts, we identified a novel activity that specifically displaces RPA, but not POT1, from telomeric ssDNA. Using purified protein, here we show that the heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) recapitulates the RPA displacing activity. The RPA displacing activity is inhibited by the telomeric repeat-containing RNA (TERRA) in early S phase, but is then unleashed in late S phase when TERRA levels decline at telomeres. Interestingly, TERRA also promotes POT1 binding to telomeric ssDNA by removing hnRNPA1, suggesting that the re-accumulation of TERRA after S phase helps to complete the RPA-to-POT1 switch on telomeric ssDNA. Together, our data suggest that hnRNPA1, TERRA and POT1 act in concert to displace RPA from telomeric ssDNA after DNA replication, and promote telomere capping to preserve genomic integrity.


Asunto(s)
ADN de Cadena Simple/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , ARN/metabolismo , Proteína de Replicación A/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Telómero/genética , Telómero/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada , Unión Competitiva , Proteínas de Ciclo Celular/metabolismo , Extractos Celulares , Replicación del ADN , Células HeLa , Ribonucleoproteína Nuclear Heterogénea A1 , Humanos , Unión Proteica , ARN/genética , Fase S , Complejo Shelterina
10.
Trends Biochem Sci ; 36(3): 133-40, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20947357

RESUMEN

The integrity of the genome is constantly challenged by intrinsic and extrinsic genotoxic stresses that damage DNA. The cellular responses to DNA damage are orchestrated by DNA damage signaling pathways, also known as DNA damage checkpoints. These signaling pathways play crucial roles in detecting DNA damage, regulating DNA repair and coordinating DNA repair with other cellular processes. In vertebrates, the ATM- and Rad3-related (ATR) kinase plays a key role in the response to a broad spectrum of DNA damage and DNA replication stress. Here, we will discuss the recent findings on how ATR is activated by DNA damage and how it protects the genome against interference with DNA replication.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Replicación del ADN/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/genética , Daño del ADN/genética , Daño del ADN/fisiología , Reparación del ADN/genética , Reparación del ADN/fisiología , Replicación del ADN/genética , Humanos , Modelos Biológicos , Proteínas Serina-Treonina Quinasas/genética
11.
Mol Cell ; 40(1): 22-33, 2010 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-20932472

RESUMEN

The proper coordination between DNA replication and mitosis during cell-cycle progression is crucial for genomic stability. During G2 and mitosis, Set8 catalyzes monomethylation of histone H4 on lysine 20 (H4K20me1), which promotes chromatin compaction. Set8 levels decline in S phase, but why and how this occurs is unclear. Here, we show that Set8 is targeted for proteolysis in S phase and in response to DNA damage by the E3 ubiquitin ligase, CRL4(Cdt2). Set8 ubiquitylation occurs on chromatin and is coupled to DNA replication via a specific degron in Set8 that binds PCNA. Inactivation of CRL4(Cdt2) leads to Set8 stabilization and aberrant H4K20me1 accumulation in replicating cells. Transient S phase expression of a Set8 mutant lacking the degron promotes premature H4K20me1 accumulation and chromatin compaction, and triggers a checkpoint-mediated G2 arrest. Thus, CRL4(Cdt2)-dependent destruction of Set8 in S phase preserves genome stability by preventing aberrant chromatin compaction during DNA synthesis.


Asunto(s)
Proliferación Celular , Ensamble y Desensamble de Cromatina , Proteínas Cullin/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Procesamiento Proteico-Postraduccional , Fase S , Animales , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Ensamble y Desensamble de Cromatina/efectos de los fármacos , Ensamble y Desensamble de Cromatina/efectos de la radiación , Proteínas Cullin/genética , Daño del ADN , Replicación del ADN , Regulación hacia Abajo , Inestabilidad Genómica , Células HeLa , N-Metiltransferasa de Histona-Lisina/genética , Histonas/genética , Humanos , Metilación , Mutación , Proteínas Nucleares/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Unión Proteica , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de la radiación , Fase S/efectos de los fármacos , Fase S/efectos de la radiación , Factores de Tiempo , Ubiquitina-Proteína Ligasas , Ubiquitinación , Xenopus
12.
Crit Rev Biochem Mol Biol ; 45(4): 266-75, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20515430

RESUMEN

The maintenance of genomic stability relies on the coordinated action of a number of cellular processes, including activation of the DNA-damage checkpoint, DNA replication, DNA repair, and telomere homeostasis. Many proteins involved in these cellular processes use different types of functional modules to regulate and execute their functions. Recent studies have revealed that many DNA-damage checkpoint and DNA repair proteins in human cells possess the oligonucleotide/oligosaccharide-binding (OB) fold domains, which are known to bind single-stranded DNA in both prokaryotes and eukaryotes. Furthermore, during the DNA damage response, the OB folds of the human checkpoint and DNA repair proteins play critical roles in DNA binding, protein complex assembly, and regulating protein-protein interactions. These findings suggest that the OB fold is an evolutionarily conserved functional module that is widely used by genome guardians. In this review, we will highlight the functions of several well-characterized or newly discovered eukaryotic OB-fold proteins in the DNA damage response.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Inestabilidad Genómica , Animales , Reparación del ADN , Humanos , Oligonucleótidos/metabolismo , Oligosacáridos/metabolismo , Pliegue de Proteína , Estructura Terciaria de Proteína , Proteína de Replicación A/química , Proteína de Replicación A/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...