Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Front Immunol ; 15: 1379833, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38911871

RESUMEN

Pollen from Salsola kali, i.e., saltwort, Russian thistle, is a major allergen source in the coastal regions of southern Europe, in Turkey, Central Asia, and Iran. S. kali-allergic patients mainly suffer from hay-fever (i.e., rhinitis and conjunctivitis), asthma, and allergic skin symptoms. The aim of this study was to investigate the importance of individual S. kali allergen molecules. Sal k 1, Sal k 2, Sal k 3, Sal k 4, Sal k 5, and Sal k 6 were expressed in Escherichia coli as recombinant proteins containing a C-terminal hexahistidine tag and purified by nickel affinity chromatography. The purity of the recombinant allergens was analyzed by SDS-PAGE. Their molecular weight was determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and their fold and secondary structure were studied by circular dichroism (CD) spectroscopy. Sera from clinically well-characterized S. kali-allergic patients were used for IgE reactivity and basophil activation experiments. S. kali allergen-specific IgE levels and IgE levels specific for the highly IgE cross-reactive profilin and the calcium-binding allergen from timothy grass pollen, Phl p 12 and Phl p 7, respectively, were measured by ImmunoCAP. The allergenic activity of natural S. kali pollen allergens was studied in basophil activation experiments. Recombinant S. kali allergens were folded when studied by CD analysis. The sum of recombinant allergen-specific IgE levels and allergen-extract-specific IgE levels was highly correlated. Sal k 1 and profilin, reactive with IgE from 64% and 49% of patients, respectively, were the most important allergens, whereas the other S. kali allergens were less frequently recognized. Specific IgE levels were highest for profilin. Of note, 37% of patients who were negative for Sal k 1 showed IgE reactivity to Phl p 12, emphasizing the importance of the ubiquitous cytoskeletal actin-binding protein, profilin, for the diagnosis of IgE sensitization in S. kali-allergic patients. rPhl p 12 and rSal k 4 showed equivalent IgE reactivity, and the clinical importance of profilin was underlined by the fact that profilin-monosensitized patients suffered from symptoms of respiratory allergy to saltwort. Accordingly, profilin should be included in the panel of allergen molecules for diagnosis and in molecular allergy vaccines for the treatment and prevention of S. kali allergy.


Asunto(s)
Alérgenos , Reacciones Cruzadas , Inmunoglobulina E , Polen , Profilinas , Salsola , Humanos , Profilinas/inmunología , Profilinas/química , Inmunoglobulina E/inmunología , Alérgenos/inmunología , Alérgenos/genética , Salsola/inmunología , Femenino , Polen/inmunología , Masculino , Reacciones Cruzadas/inmunología , Adulto , Proteínas Recombinantes/inmunología , Rinitis Alérgica Estacional/inmunología , Persona de Mediana Edad , Basófilos/inmunología , Basófilos/metabolismo , Antígenos de Plantas/inmunología , Antígenos de Plantas/genética , Adulto Joven , Adolescente , Proteínas de Plantas/inmunología , Proteínas de Plantas/genética
2.
Front Immunol ; 15: 1343024, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38784378

RESUMEN

Background: Around 20% of the population in Northern and Central Europe is affected by birch pollen allergy, with the major birch pollen allergen Bet v 1 as the main elicitor of allergic reactions. Together with its cross-reactive allergens from related trees and foods, Bet v 1 causes an impaired quality of life. Hence, new treatment strategies were elaborated, demonstrating the effectiveness of blocking IgG antibodies on Bet v 1-induced IgE-mediated reactions. A recent study provided evidence for the first time that Bet v 1-specific nanobodies reduce patients´ IgE binding to Bet v 1. In order to increase the potential to outcompete IgE recognition of Bet v 1 and to foster cross-reactivity and cross-protection, we developed Bet v 1-specific nanobody trimers and evaluated their capacity to suppress polyclonal IgE binding to corresponding allergens and allergen-induced basophil degranulation. Methods: Nanobody trimers were engineered by adding isoleucine zippers, thus enabling trimeric formation. Trimers were analyzed for their cross-reactivity, binding kinetics to Bet v 1, and related allergens, and patients' IgE inhibition potential. Finally, their efficacy to prevent basophil degranulation was investigated. Results: Trimers showed enhanced recognition of cross-reactive allergens and increased efficiency to reduce IgE-allergen binding compared to nanobody monomers. Furthermore, trimers displayed slow dissociation rates from allergens and suppressed allergen-induced mediator release. Conclusion: We generated high-affine nanobody trimers that target Bet v 1 and related allergens. Trimers blocked IgE-allergen interaction by competing with IgE for allergen binding. They inhibited IgE-mediated release of biological mediators, demonstrating a promising potential to prevent allergic reactions caused by Bet v 1 and relatives.


Asunto(s)
Alérgenos , Antígenos de Plantas , Reacciones Cruzadas , Inmunoglobulina E , Anticuerpos de Dominio Único , Inmunoglobulina E/inmunología , Inmunoglobulina E/metabolismo , Humanos , Antígenos de Plantas/inmunología , Anticuerpos de Dominio Único/inmunología , Reacciones Cruzadas/inmunología , Alérgenos/inmunología , Basófilos/inmunología , Basófilos/metabolismo , Unión Proteica , Rinitis Alérgica Estacional/inmunología , Multimerización de Proteína
3.
Cells ; 13(5)2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38474409

RESUMEN

Up to a third of the world's population suffers from allergies, yet the effectiveness of available preventative measures remains, at large, poor. Consequently, the development of successful prophylactic strategies for the induction of tolerance against allergens is crucial. In proof-of-concept studies, our laboratory has previously shown that the transfer of autologous hematopoietic stem cells (HSC) or autologous B cells expressing a major grass pollen allergen, Phl p 5, induces robust tolerance in mice. However, eventual clinical translation would require safe allergen expression without the need for retroviral transduction. Therefore, we aimed to chemically couple Phl p 5 to the surface of leukocytes and tested their ability to induce tolerance. Phl p 5 was coupled by two separate techniques, either by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) or by linkage via a lipophilic anchor, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol)-maleimide (DSPE-PEG-Mal). The effectiveness was assessed in fresh and cultured Phl p 5-coupled cells by flow cytometry, image cytometry, and immunofluorescence microscopy. Chemical coupling of Phl p 5 using EDC was robust but was followed by rapid apoptosis. DSPE-PEG-Mal-mediated linkage was also strong, but antigen levels declined due to antigen internalization. Cells coupled with Phl p 5 by either method were transferred into autologous mice. While administration of EDC-coupled splenocytes together with short course immunosuppression initially reduced Phl p 5-specific antibody levels to a moderate degree, both methods did not induce sustained tolerance towards Phl p 5 upon several subcutaneous immunizations with the allergen. Overall, our results demonstrate the successful chemical linkage of an allergen to leukocytes using two separate techniques, eliminating the risks of genetic modifications. More durable surface expression still needs to be achieved for use in prophylactic cell therapy protocols.


Asunto(s)
Alérgenos , Hipersensibilidad , Ratones , Animales , Inmunoglobulina E/metabolismo , Polen , Poaceae/metabolismo
4.
Vaccines (Basel) ; 12(3)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38543863

RESUMEN

BACKGROUND: COVID-19, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a recurrent endemic disease affecting the whole world. Since November 2021, Omicron and its subvariants have dominated in the spread of the disease. In order to prevent severe courses of disease, vaccines are needed to boost and maintain antibody levels capable of neutralizing Omicron. Recently, we produced and characterized a SARS-CoV-2 vaccine based on a recombinant fusion protein consisting of hepatitis B virus (HBV)-derived PreS and two SARS-CoV-2 wild-type RBDs. OBJECTIVES: To develop a PreS-RBD vaccine which induces high levels of Omicron-specific neutralizing antibodies. METHODS: We designed, produced, characterized and compared strain-specific (wild-type: W-PreS-W; Omicron: O-PreS-O), bivalent (mix of W-PreS-W and O-PreS-O) and chimeric (i.e., W-PreS-O) SARS-CoV-2 protein subunit vaccines. Immunogens were characterized in vitro using protein chemical methods, mass spectrometry, and circular dichroism in combination with thermal denaturation and immunological methods. In addition, BALB/c mice were immunized with aluminum-hydroxide-adsorbed proteins and aluminum hydroxide alone (i.e., placebo) to study the specific antibody and cytokine responses, safety and Omicron neutralization. RESULTS: Defined and pure immunogens could be produced in significant quantities as secreted and folded proteins in mammalian cells. The antibodies induced after vaccination with different doses of strain-specific, bivalent and chimeric PreS-RBD fusion proteins reacted with wild-type and Omicron RBD in a dose-dependent manner and resulted in a mixed Th1/Th2 immune response. Interestingly, the RBD-specific IgG levels induced with the different vaccines were comparable, but the W-PreS-O-induced virus neutralization titers against Omicron (median VNT50: 5000) were seven- and twofold higher than the W-PreS-W- and O-PreS-O-specific ones, respectively, and they were six-fold higher than those of the bivalent vaccine. CONCLUSION: Among the tested immunogens, the chimeric PreS-RBD subunit vaccine, W-PreS-O, induced the highest neutralizing antibody titers against Omicron. Thus, W-PreS-O seems to be a highly promising COVID-19 vaccine candidate for further preclinical and clinical evaluation.

5.
Front Immunol ; 14: 1241518, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928538

RESUMEN

Albumins from animals are highly cross-reactive allergens for patients suffering from immunoglobulin E (IgE)-mediated allergy. Approximately 20-30% of cat and dog allergic patients show IgE reactivity and mount IgE-mediated allergic reactions to cat and dog albumin. It is astonishing that allergic patients can develop specific IgE responses against animal albumins because these proteins exhibit a more than 70% sequence identity to human serum albumin (HSA) which is the most abundant protein in the blood of the human body. The sequence identity of cat albumin (Fel d 2) and dog albumin (Can f 3) and HSA are 82% and 80%, respectively. Given the high degree of sequence identity between the latter two allergens and HSA one would expect that immunological tolerance would prohibit IgE sensitization to Fel d 2 and Can f 3. Here we discuss two possibilities for how IgE sensitization to Fel d 2 and Can f 3 may develop. One possibility is the failed development of immune tolerance in albumin-allergic patients whereas the other possibility is highly selective immune tolerance to HSA but not to Fel d 2 and Can f 3. If the first assumption is correct it should be possible to detect HSA-specific T cell responses and HSA-containing immune complexes in sensitized patients. In the latter scenario few differences in the sequences of Fel d 2 and Can f 3 as compared to HSA would be responsible for the development of selective T cell and B cell responses towards Fel d 2 as well as Can f 3. However, the immunological mechanisms of albumin sensitization have not yet been investigated in detail although this will be important for the development of allergen-specific prevention and allergen-specific immunotherapy (AIT) strategies for allergy to albumin.


Asunto(s)
Albúminas , Hipersensibilidad , Humanos , Gatos , Animales , Perros , Alérgenos , Inmunoglobulina E , Albúmina Sérica Humana
6.
Allergy ; 78(12): 3136-3153, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37701941

RESUMEN

BACKGROUND: The nature of epitopes on Bet v 1 recognized by natural IgG antibodies of birch pollen allergic patients and birch pollen-exposed but non-sensitized subjects has not been studied in detail. OBJECTIVE: To investigate IgE and IgG recognition of Bet v 1 and to study the effects of natural Bet v 1-specific IgG antibodies on IgE recognition of Bet v 1 and Bet v 1-induced basophil activation. METHODS: Sera from birch pollen allergic patients (BPA, n = 76), allergic patients without birch pollen allergy (NBPA, n = 40) and non-allergic individuals (NA, n = 48) were tested for IgE, IgG as well as IgG1 and IgG4 reactivity to folded recombinant Bet v 1, two unfolded recombinant Bet v 1 fragments comprising the N-terminal (F1) and C-terminal half of Bet v 1 (F2) and unfolded peptides spanning the corresponding sequences of Bet v 1 and the apple allergen Mal d 1 by ELISA or micro-array analysis. The ability of Bet v 1-specific serum antibodies from non-allergic subjects to inhibit allergic patients IgE or IgG binding to rBet v 1 or to unfolded Bet v 1-derivatives was assessed by competition ELISAs. Furthermore, the ability of serum antibodies from allergic and non-allergic subjects to modulate Bet v 1-induced basophil activation was investigated using rat basophilic leukaemia cells expressing the human FcεRI which had been loaded with IgE from BPA patients. RESULTS: IgE antibodies from BPA patients react almost exclusively with conformational epitopes whereas IgG, IgG1 and IgG4 antibodies from BPA, NBPA and NA subjects recognize mainly unfolded and sequential epitopes. IgG competition studies show that IgG specific for unfolded/sequential Bet v 1 epitopes is not inhibited by folded Bet v 1 and hence the latter seem to represent cryptic epitopes. IgG reactivity to Bet v 1 peptides did not correlate with IgG reactivity to the corresponding Mal d 1 peptides and therefore does not seem to be a result of primary sensitization to PR10 allergen-containing food. Natural Bet v 1-specific IgG antibodies inhibited IgE binding to Bet v 1 only poorly and could even enhance Bet v 1-specific basophil activation. CONCLUSION: IgE and IgG antibodies from BPA patients and birch pollen-exposed non-sensitized subjects recognize different epitopes. These findings explain why natural allergen-specific IgG do not protect against allergic symptoms and suggest that allergen-specific IgE and IgG have different clonal origin.


Asunto(s)
Hipersensibilidad a los Alimentos , Polen , Ratas , Animales , Humanos , Epítopos , Antígenos de Plantas , Alérgenos , Inmunoglobulina G , Inmunoglobulina E , Péptidos , Proteínas de Plantas , Proteínas Recombinantes
7.
EMBO Rep ; 24(11): e57842, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37768718

RESUMEN

Molecular crowding of agonist peptide/MHC class II complexes (pMHCIIs) with structurally similar, yet per se non-stimulatory endogenous pMHCIIs is postulated to sensitize T-cells for the recognition of single antigens on the surface of dendritic cells and B-cells. When testing this premise with the use of advanced live cell microscopy, we observe pMHCIIs as monomeric, randomly distributed entities diffusing rapidly after entering the APC surface. Synaptic TCR engagement of highly abundant endogenous pMHCIIs is low or non-existent and affects neither TCR engagement of rare agonist pMHCII in early and advanced synapses nor agonist-induced TCR-proximal signaling. Our findings highlight the capacity of single freely diffusing agonist pMHCIIs to elicit the full T-cell response in an autonomous and peptide-specific fashion with consequences for adaptive immunity and immunotherapeutic approaches.


Asunto(s)
Antígenos de Histocompatibilidad Clase II , Linfocitos T , Péptidos/metabolismo , Antígenos , Receptores de Antígenos de Linfocitos T
8.
Mol Nutr Food Res ; 67(16): e2200601, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37173826

RESUMEN

SCOPE: Red meat, a staple food of Western diets, can also induce IgE-mediated allergic reactions. Yet, apart from the heat-labile protein serum albumin and the carbohydrate α-Gal, the molecules causing allergic reactions to red meat remain unknown. METHODS AND RESULTS: IgE reactivity profiles of beef-sensitized individuals are analyzed by IgE-immunoblotting with protein extracts from raw and cooked beef. Two IgE-reactive proteins are identified by peptide mass fingerprinting as myosinlight chain 1 (MYL1) and myosin light chain 3 (MYL3) in cooked beef extract and are designated Bos d 13 isoallergens. MYL1 and MYL3 are produced recombinantly in Escherichia coli. ELISAs proved their IgE reactivity and circular dichroism analysis showed that they represent folded molecules with remarkable thermal stability. In vitro gastrointestinal digestion experiments showed the higher stability of rMYL1 as compared to rMYL3. Exposure of a monolayer of Caco-2 cells to rMYL1 indicated that the molecule is able to cross intestinal epithelial cells without disturbing the integrity of the tight junctions, suggesting the sensitizing capacity of MYL1. CONCLUSION: MYLs are identified as novel heat-stable bovine meat allergens.


Asunto(s)
Alérgenos , Hipersensibilidad a los Alimentos , Humanos , Bovinos , Animales , Hipersensibilidad a los Alimentos/etiología , Calor , Células CACO-2 , Inmunoglobulina E , Carne/análisis , Reacciones Cruzadas
9.
Ann Allergy Asthma Immunol ; 130(4): 479-484.e3, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36435304

RESUMEN

BACKGROUND: Any reliable allergy diagnosis depends on the quality of the testing material. In the case of fungal allergy, fungal extracts, typically used as test solutions, exhibit considerable differences in their allergenicity. Better knowledge of fungal allergen expression would enable the production of diagnostic fungal extracts of higher quality and, thus, improve the specificity and sensitivity of fungal allergy diagnosis. OBJECTIVE: Our study aimed to find optimal cultivation conditions for the highest expression of fungal allergens. METHODS: Fungal species (Alternaria alternata, Ulocladium chartarum, Aspergillus fumigatus, Cladosporium herbarum, and Paecilomyces variotii) were cultivated under different conditions, and extracts were prepared from fungal material. To detect the expression of the homologous major allergens Alt a 1 and Ulo c 1 and of different fungal enolases, Western blots with allergen-specific antibodies were carried out. RESULTS: Western blots performed with antibodies directed against Alt a 1 and enolases showed that the expression of fungal allergens is highly species-dependent. Even allergens of closely related fungal species and highly conserved, cross-reactive allergens display different expression patterns. CONCLUSION: This study exhibits the impact of different environmental conditions on the expression of the fungal allergens Alt a 1, Ulo c 1, and different fungal enolases. Furthermore, it broadens the knowledge regarding the expression pattern of the major fungal allergens Alt a 1 and Ulo c 1. Information obtained in this study will help to optimize fungal cultivation to produce diagnostic fungal extracts of high quality and, therefore, improve diagnostic specificity and sensitivity.


Asunto(s)
Alérgenos , Hipersensibilidad , Humanos , Antígenos Fúngicos , Alternaria , Aspergillus fumigatus , Extractos Vegetales , Proteínas Fúngicas
10.
J Allergy Clin Immunol ; 151(1): 202-211, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35953001

RESUMEN

BACKGROUND: Mast cells (MC) and basophils are effector cells of allergic reactions and display a number of activation-linked cell surface antigens. Of these antigens, however, only a few are functionally relevant and specifically expressed in these cells. OBJECTIVE: We sought to identify MC- and basophil-specific surface molecules and to study their cellular distribution and regulation during cytokine-induced and IgE-dependent activation. METHODS: Multicolor flow cytometry was performed to recognize surface antigens and to determine changes in antigen expression upon activation. RESULTS: We identified Siglec-6 (CD327) as a differentially regulated surface antigen on human MC and basophils. In the bone marrow, Siglec-6 was expressed abundantly on MC in patients with mastocytosis and in reactive states, but it was not detected on other myeloid cells, with the exception of basophils and monocytes. In healthy individuals, allergic patients, and patients with chronic myeloid leukemia (CML), Siglec-6 was identified on CD203c+ blood basophils, a subset of CD19+ B lymphocytes, and few CD14+ monocytes, but not on other blood leukocytes. CML basophils expressed higher levels of Siglec-6 than normal basophils. IL-3 promoted Siglec-6 expression on normal and CML basophils, and stem cell factor increased the expression of Siglec-6 on tissue MC. Unexpectedly, IgE-dependent activation resulted in downregulation of Siglec-6 in IL-3-primed basophils, whereas in MC, IgE-dependent activation augmented stem cell factor-induced upregulation of Siglec-6. CONCLUSIONS: Siglec-6 is a dynamically regulated marker of MC and basophils. Activated MC and basophils exhibit unique Siglec-6 responses, including cytokine-dependent upregulation and unique, cell-specific, responses to IgE-receptor cross-linking.


Asunto(s)
Basófilos , Mastocitos , Humanos , Antígenos CD , Enfermedad Crónica , Inmunoglobulina E , Interleucina-3/metabolismo , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico , Factor de Células Madre/metabolismo
11.
Allergy ; 77(1): 230-242, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34453317

RESUMEN

BACKGROUND: The determinants of successful humoral immune response to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are of critical importance for the design of effective vaccines and the evaluation of the degree of protective immunity conferred by exposure to the virus. As novel variants emerge, understanding their likelihood of suppression by population antibody repertoires has become increasingly important. METHODS: In this study, we analyzed the SARS-CoV-2 polyclonal antibody response in a large population of clinically well-characterized patients after mild and severe COVID-19 using a panel of microarrayed structurally folded and unfolded SARS-CoV-2 proteins, as well as sequential peptides, spanning the surface spike protein (S) and the receptor-binding domain (RBD) of the virus. RESULTS: S- and RBD-specific antibody responses were dominated by immunoglobulin G (IgG), mainly IgG1 , and directed against structurally folded S and RBD and three distinct peptide epitopes in S2. The virus neutralization activity of patients´ sera was highly correlated with IgG antibodies specific for conformational but not sequential RBD epitopes and their ability to prevent RBD binding to its human receptor angiotensin-converting enzyme 2 (ACE2). Twenty percent of patients selectively lacked RBD-specific IgG. Only immunization with folded, but not with unfolded RBD, induced antibodies against conformational epitopes with high virus-neutralizing activity. Conformational RBD epitopes required for protection do not seem to be altered in the currently emerging virus variants. CONCLUSION: These results are fundamental for estimating the protective activity of antibody responses after natural infection or vaccination and for the design of vaccines, which can induce high levels of SARS-CoV-2-neutralizing antibodies conferring sterilizing immunity.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , Epítopos , Humanos , Glicoproteína de la Espiga del Coronavirus/genética
13.
Allergy ; 77(6): 1751-1760, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34837242

RESUMEN

BACKGROUND: Recent studies showed that a single injection of human monoclonal allergen-specific IgG antibodies significantly reduced allergic symptoms in birch pollen-allergic patients. Since the production of full monoclonal antibodies in sufficient amounts is laborious and expensive, we sought to investigate if smaller recombinant allergen-specific antibody fragments, that is, nanobodies, have similar protective potential. For this purpose, nanobodies specific for Bet v 1, the major birch pollen allergen, were generated to evaluate their efficacy to inhibit IgE-mediated responses. METHODS: A cDNA-VHH library was constructed from a camel immunized with Bet v 1 and screened for Bet v 1 binders encoding sequences by phage display. Selected nanobodies were expressed, purified, and analyzed in regards of epitope-specificity and affinity to Bet v 1. Furthermore, cross-reactivity to Bet v 1-homologues from alder, hazel and apple, and their usefulness to inhibit IgE binding and allergen-induced basophil activation were investigated. RESULTS: We isolated three nanobodies that recognize Bet v 1 with high affinity and cross-react with Aln g 1 (alder) and Cor a 1 (hazel). Their epitopes were mapped to the alpha-helix at the C-terminus of Bet v 1. All nanobodies inhibited allergic patients' polyclonal IgE binding to Bet v 1, Aln g 1, and Cor a 1 and partially suppressed Bet v 1-induced basophil activation. CONCLUSION: We identified high-affinity Bet v 1-specific nanobodies that recognize an important IgE epitope and reduce allergen-induced basophil activation revealing the first proof that allergen-specific nanobodies are useful tools for future treatment of pollen allergy.


Asunto(s)
Hipersensibilidad , Anticuerpos de Dominio Único , Alérgenos , Antígenos de Plantas , Epítopos , Humanos , Inmunoglobulina E , Proteínas de Plantas , Polen
14.
Front Immunol ; 12: 744544, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34795666

RESUMEN

IgE-mediated allergy to birch pollen affects more than 100 million patients world-wide. Bet v 1, a 17 kDa protein is the major allergen in birch pollen responsible for allergic rhinoconjunctivitis and asthma in birch pollen allergic patients. Allergen-specific immunotherapy (AIT) based on therapeutic administration of Bet v 1-containing vaccines is an effective treatment for birch pollen allergy but no allergen-specific forms of prevention are available. We developed a mouse model for IgE sensitization to Bet v 1 based on subcutaneous injection of aluminum-hydroxide adsorbed recombinant Bet v 1 and performed a detailed characterization of the specificities of the IgE, IgG and CD4+ T cell responses in sensitized mice using seven synthetic peptides of 31-42 amino acids length which comprised the Bet v 1 sequence and the epitopes recognized by human CD4+ T cells. We then demonstrate that preventive systemic administration of a mix of synthetic non-allergenic Bet v 1 peptides to 3-4 week old mice significantly reduced allergic immune responses, including IgE, IgG, IgE-mediated basophil activation, CD4+ T cell and IL-4 responses to the complete Bet v 1 allergen but not to the unrelated major grass pollen allergen Phl p 5, without inducing Bet v 1-specific allergic sensitization or adaptive immunity. Our results thus demonstrate that early preventive administration of non-allergenic synthetic T cell epitope-containing allergen peptides could be a safe strategy for the prevention of allergen-specific IgE sensitization.


Asunto(s)
Antígenos de Plantas/inmunología , Desensibilización Inmunológica/métodos , Epítopos de Linfocito T/inmunología , Péptidos/inmunología , Rinitis Alérgica Estacional/inmunología , Animales , Ratones , Rinitis Alérgica Estacional/prevención & control
15.
Front Immunol ; 12: 742732, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34630424

RESUMEN

Peanuts and tree nuts are two of the most common elicitors of immunoglobulin E (IgE)-mediated food allergy. Nut allergy is frequently associated with systemic reactions and can lead to potentially life-threatening respiratory and circulatory symptoms. Furthermore, nut allergy usually persists throughout life. Whether sensitized patients exhibit severe and life-threatening reactions (e.g., anaphylaxis), mild and/or local reactions (e.g., pollen-food allergy syndrome) or no relevant symptoms depends much on IgE recognition of digestion-resistant class I food allergens, IgE cross-reactivity of class II food allergens with respiratory allergens and clinically not relevant plant-derived carbohydrate epitopes, respectively. Accordingly, molecular allergy diagnosis based on the measurement of allergen-specific IgE levels to allergen molecules provides important information in addition to provocation testing in the diagnosis of food allergy. Molecular allergy diagnosis helps identifying the genuinely sensitizing nuts, it determines IgE sensitization to class I and II food allergen molecules and hence provides a basis for personalized forms of treatment such as precise prescription of diet and allergen-specific immunotherapy (AIT). Currently available forms of nut-specific AIT are based only on allergen extracts, have been mainly developed for peanut but not for other nuts and, unlike AIT for respiratory allergies which utilize often subcutaneous administration, are given preferentially by the oral route. Here we review prevalence of allergy to peanut and tree nuts in different populations of the world, summarize knowledge regarding the involved nut allergen molecules and current AIT approaches for nut allergy. We argue that nut-specific AIT may benefit from molecular subcutaneous AIT (SCIT) approaches but identify also possible hurdles for such an approach and explain why molecular SCIT may be a hard nut to crack.


Asunto(s)
Desensibilización Inmunológica/métodos , Hipersensibilidad a la Nuez/inmunología , Hipersensibilidad a la Nuez/prevención & control , Alérgenos/inmunología , Humanos
16.
Front Immunol ; 12: 719573, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34512644

RESUMEN

Approximately 30% of the world population suffers from immunoglobulin-E (IgE)-mediated allergy. IgE-mediated allergy affects the respiratory tract, the skin and the gastrointestinal tract and may lead to life-threatening acute systemic manifestations such as anaphylactic shock. The symptoms of allergy are mediated by IgE-recognition of causative allergen molecules from different allergen sources. Today, molecular allergy diagnosis allows determining the disease-causing allergens to develop allergen-specific concepts for prevention and treatment of allergy. Allergen-specific preventive and therapeutic strategies include allergen avoidance, vaccination, and tolerance induction. The implementation of these preventive and therapeutic strategies requires a detailed knowledge of the relevant allergen molecules affecting a given population. China is the world´s most populous country with around 1.4 billion inhabitants and an estimated number of more than 400 million allergic patients. Research in allergy in China has dramatically increased in the last decade. We summarize in this review article what is known about the dominating allergen sources and allergen molecules in China and what further investigations could be performed to draw a molecular map of IgE sensitization for China as a basis for the implementation of systematic and rational allergen-specific preventive and therapeutic strategies to combat allergic diseases in this country.


Asunto(s)
Alérgenos/inmunología , Desensibilización Inmunológica , Hipersensibilidad/inmunología , Hipersensibilidad/terapia , Inmunidad , Biomarcadores , China , Susceptibilidad a Enfermedades , Epítopos/inmunología , Humanos , Hipersensibilidad/diagnóstico , Hipersensibilidad/prevención & control , Inmunoglobulina E/inmunología , Técnicas de Diagnóstico Molecular , Vacunación , Vacunas/inmunología
18.
Front Immunol ; 12: 687294, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34220841

RESUMEN

Background: Several studies indicate that Der p 7 is an important and clinically relevant allergen of Dermatophagoides pteronyssinus which should be included in vaccines for treatment of house dust mite (HDM) allergy. Aim of this study was to characterize the IgE epitopes of Der p 7. Methods: Recombinant Der p 7 was expressed and purified, analyzed for fold by circular dichroism and tested for its allergenic activity by basophil activation. Seven overlapping, surface-exposed peptides (P1-P7) with a length of 27 to 37 amino acids, which spanned the Der p 7 sequence, were synthesized and tested for IgE reactivity and allergenic activity by basophil activation assay. Carrier-bound peptides were studied for their ability to induce allergen-specific IgG antibodies in rabbits. Peptide-specific antibodies were used to inhibit allergic patients` IgE binding to Der p 7 by ELISA for mapping of IgE epitopes. Results: rDer p 7 showed high allergenic activity comparable with Der p 5, Der p 21, and Der p 23. None of the seven tested peptides showed any IgE reactivity or allergenic activity when tested with HDM- allergic patients indicating lack of sequential IgE epitopes on Der p 7. IgE inhibition experiments using anti-peptide specific IgGs and molecular modeling enabled us to identify discontinuous, conformational IgE epitopes of Der p 7. Conclusion and Clinical Relevance: IgE epitopes of Der p 7 belong to the conformational and discontinuous type whereas sequential Der p 7 peptides lack IgE reactivity. It should thus be possible to construct hypoallergenic vaccines for Der p 7 based on carrier-bound allergen peptides.


Asunto(s)
Alérgenos/inmunología , Antígenos Dermatofagoides/inmunología , Proteínas de Artrópodos/inmunología , Epítopos Inmunodominantes , Inmunoglobulina E/sangre , Pyroglyphidae/inmunología , Hipersensibilidad Respiratoria/inmunología , Alérgenos/química , Alérgenos/genética , Animales , Antígenos Dermatofagoides/química , Antígenos Dermatofagoides/genética , Proteínas de Artrópodos/química , Proteínas de Artrópodos/genética , Estudios de Casos y Controles , Línea Celular Tumoral , Mapeo Epitopo , Humanos , Modelos Moleculares , Conformación Proteica , Pliegue de Proteína , Pyroglyphidae/genética , Conejos , Ratas , Hipersensibilidad Respiratoria/sangre
19.
Viruses ; 13(5)2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-34063445

RESUMEN

Allergen exposure and rhinovirus (RV) infections are common triggers of acute wheezing exacerbations in early childhood. The identification of such trigger factors is difficult but may have therapeutic implications. Increases of IgE and IgG in sera, were shown against allergens and the N-terminal portion of the VP1 proteins of RV species, respectively, several weeks after allergen exposure or RV infection. Hence, increases in VP1-specific IgG and in allergen-specific IgE may serve as biomarkers for RV infections or allergen exposure. The MeDALL-allergen chip containing comprehensive panels of allergens and the PreDicta RV chip equipped with VP1-derived peptides, representative of three genetic RV species, were used to measure allergen-specific IgE levels and RV-species-specific IgG levels in sera obtained from 120 preschool children at the time of an acute wheezing attack and convalescence. Nearly 20% of the children (22/120) showed specific IgE sensitizations to at least one of the allergen molecules on the MeDALL chip. For 87% of the children, increases in RV-specific IgG could be detected in the follow-up sera. This percentage of RV-specific IgG increases was equal in IgE-positive and -negative children. In 10% of the children, increases or de novo appearances of IgE sensitizations indicative of allergen exposure could be detected. Our results suggest that, in the majority of preschool children, RV infections trigger wheezing attacks, but, in addition, allergen exposure seems to play a role as a trigger factor. RV-induced wheezing attacks occur in IgE-sensitized and non-IgE-sensitized children, indicating that allergic sensitization is not a prerequisite for RV-induced wheeze.


Asunto(s)
Alérgenos/inmunología , Anticuerpos Antivirales/inmunología , Infecciones por Picornaviridae/inmunología , Ruidos Respiratorios/inmunología , Rhinovirus/inmunología , Alérgenos/genética , Antígenos Virales/genética , Antígenos Virales/inmunología , Preescolar , Femenino , Humanos , Inmunoglobulina E/sangre , Inmunoglobulina G/sangre , Lactante , Masculino , Análisis por Micromatrices , Infecciones por Picornaviridae/virología , Rhinovirus/genética , Rhinovirus/fisiología
20.
Sci Rep ; 11(1): 3551, 2021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-33574352

RESUMEN

Human respiratory syncytial virus (RSV) is one of the most important causes of severe respiratory tract infections in early childhood. The only prophylactic protection is the neutralizing antibody, palivizumab, which targets a conformational epitope of the RSV fusion (F) protein. The F protein is generated as a F0 precursor containing two furin cleavage sites allowing excision of the P27 fragment and then gives rise to a fusion-competent version consisting of the N-terminal F2 subunit and the a C-terminal F1 subunits linked by two disulphide bonds. To investigate natural human F-specific antibody responses, F2 conferring the species-specificity of RSV, was expressed in Escherichia coli. Furthermore, the F0 protein, comprising both subunits F2 and F1, was expressed as palivizumab-reactive glycoprotein in baculovirus-infected insect cells. Six overlapping F2-derived peptides lacking secondary structure were synthesized. The analysis of IgG, IgA and IgM responses of adult subjects to native versions and denatured forms of F2 and F0 and to unfolded F2-derived peptides revealed that mainly non-conformational F epitopes, some of which represented cryptic epitopes which are not exposed on the proteins were recognized. Furthermore, we found a dissociation of IgG, IgA and IgM antibody responses to F epitopes with F2 being a major target for the F-specific IgM response. The scattered and dissociated immune response to F may explain why the natural RSV-specific antibody response is only partially protective underlining the need for vaccines focusing human antibody responses towards neutralizing RSV epitopes.


Asunto(s)
Anticuerpos Antivirales/inmunología , Proteínas/inmunología , Infecciones por Virus Sincitial Respiratorio/inmunología , Virus Sincitial Respiratorio Humano/inmunología , Proteínas Virales de Fusión/inmunología , Anticuerpos Neutralizantes/genética , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/genética , Epítopos/inmunología , Humanos , Inmunoglobulina A/inmunología , Inmunoglobulina G/inmunología , Inmunoglobulina M/inmunología , Infecciones por Virus Sincitial Respiratorio/virología , Vacunas contra Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano/genética , Virus Sincitial Respiratorio Humano/patogenicidad , Proteínas Virales de Fusión/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...