Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Signal ; 17(844): eadn6052, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980922

RESUMEN

Inhibitors of the transforming growth factor-ß (TGF-ß) pathway are potentially promising antifibrotic therapies, but nonselective simultaneous inhibition of all three TGF-ß homologs has safety liabilities. TGF-ß1 is noncovalently bound to a latency-associated peptide that is, in turn, covalently bound to different presenting molecules within large latent complexes. The latent TGF-ß-binding proteins (LTBPs) present TGF-ß1 in the extracellular matrix, and TGF-ß1 is presented on immune cells by two transmembrane proteins, glycoprotein A repetitions predominant (GARP) and leucine-rich repeat protein 33 (LRRC33). Here, we describe LTBP-49247, an antibody that selectively bound to and inhibited the activation of TGF-ß1 presented by LTBPs but did not bind to TGF-ß1 presented by GARP or LRRC33. Structural studies demonstrated that LTBP-49247 recognized an epitope on LTBP-presented TGF-ß1 that is not accessible on GARP- or LRRC33-presented TGF-ß1, explaining the antibody's selectivity for LTBP-complexed TGF-ß1. In two rodent models of kidney fibrosis of different etiologies, LTBP-49247 attenuated fibrotic progression, indicating the central role of LTBP-presented TGF-ß1 in renal fibrosis. In mice, LTBP-49247 did not have the toxic effects associated with less selective TGF-ß inhibitors. These results establish the feasibility of selectively targeting LTBP-bound TGF-ß1 as an approach for treating fibrosis.


Asunto(s)
Matriz Extracelular , Fibrosis , Proteínas de Unión a TGF-beta Latente , Factor de Crecimiento Transformador beta1 , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Humanos , Proteínas de Unión a TGF-beta Latente/metabolismo , Proteínas de Unión a TGF-beta Latente/antagonistas & inhibidores , Matriz Extracelular/metabolismo , Ratones , Masculino , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Enfermedades Renales/tratamiento farmacológico , Progresión de la Enfermedad , Riñón/patología , Riñón/metabolismo , Riñón/efectos de los fármacos , Ratones Endogámicos C57BL
2.
Methods Mol Biol ; 1439: 273-304, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27317002

RESUMEN

The use of multiparametric microscopy-based screens with automated analysis has enabled the large-scale study of biological phenomena that are currently not measurable by any other method. Collectively referred to as high-content screening (HCS), or high-content analysis (HCA), these methods rely on an expanding array of imaging hardware and software automation. Coupled with an ever-growing amount of diverse chemical matter and functional genomic tools, HCS has helped open the door to a new frontier of understanding cell biology through phenotype-driven screening. With the ability to interrogate biology on a cell-by-cell basis in highly parallel microplate-based platforms, the utility of HCS continues to grow as advancements are made in acquisition speed, model system complexity, data management, and analysis systems. This chapter uses an example of screening for genetic factors regulating mitochondrial quality control to exemplify the practical considerations in developing and executing high-content campaigns.


Asunto(s)
Genómica/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Fluorescente/métodos , Imagen Óptica/métodos , Animales , Células HEK293 , Células HeLa , Humanos , Mitocondrias/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , Programas Informáticos
3.
Nature ; 524(7565): 309-314, 2015 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-26266977

RESUMEN

Protein aggregates and damaged organelles are tagged with ubiquitin chains to trigger selective autophagy. To initiate mitophagy, the ubiquitin kinase PINK1 phosphorylates ubiquitin to activate the ubiquitin ligase parkin, which builds ubiquitin chains on mitochondrial outer membrane proteins, where they act to recruit autophagy receptors. Using genome editing to knockout five autophagy receptors in HeLa cells, here we show that two receptors previously linked to xenophagy, NDP52 and optineurin, are the primary receptors for PINK1- and parkin-mediated mitophagy. PINK1 recruits NDP52 and optineurin, but not p62, to mitochondria to activate mitophagy directly, independently of parkin. Once recruited to mitochondria, NDP52 and optineurin recruit the autophagy factors ULK1, DFCP1 and WIPI1 to focal spots proximal to mitochondria, revealing a function for these autophagy receptors upstream of LC3. This supports a new model in which PINK1-generated phospho-ubiquitin serves as the autophagy signal on mitochondria, and parkin then acts to amplify this signal. This work also suggests direct and broader roles for ubiquitin phosphorylation in other autophagy pathways.


Asunto(s)
Autofagia/fisiología , Mitofagia/fisiología , Proteínas Nucleares/metabolismo , Proteínas Quinasas/metabolismo , Factor de Transcripción TFIIIA/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia , Proteínas Relacionadas con la Autofagia , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Modelos Biológicos , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
4.
J Cell Biol ; 210(3): 435-50, 2015 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-26240184

RESUMEN

The kinase PINK1 and ubiquitin ligase Parkin can regulate the selective elimination of damaged mitochondria through autophagy (mitophagy). Because of the demand on lysosomal function by mitophagy, we investigated a role for the transcription factor EB (TFEB), a master regulator of lysosomal biogenesis, in this process. We show that during mitophagy TFEB translocates to the nucleus and displays transcriptional activity in a PINK1- and Parkin-dependent manner. MITF and TFE3, homologues of TFEB belonging to the same microphthalmia/transcription factor E (MiT/TFE) family, are similarly regulated during mitophagy. Unlike TFEB translocation after starvation-induced mammalian target of rapamycin complex 1 inhibition, Parkin-mediated TFEB relocalization required Atg9A and Atg5 activity. However, constitutively active Rag guanosine triphosphatases prevented TFEB translocation during mitophagy, suggesting cross talk between these two MiT/TFE activation pathways. Analysis of clustered regularly interspaced short palindromic repeats-generated TFEB/MITF/TFE3/TFEC single, double, and triple knockout cell lines revealed that these proteins partly facilitate Parkin-mediated mitochondrial clearance. These results illuminate a pathway leading to MiT/TFE transcription factor activation, distinct from starvation-induced autophagy, which occurs during mitophagy.


Asunto(s)
Autofagia/fisiología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Mitofagia/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas 14-3-3/metabolismo , Transporte Activo de Núcleo Celular , Autofagia/genética , Proteína 5 Relacionada con la Autofagia , Proteínas Relacionadas con la Autofagia , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Línea Celular Tumoral , Técnicas de Inactivación de Genes , Células HEK293 , Células HeLa , Proteínas de Homeodominio/metabolismo , Humanos , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Factor de Transcripción Asociado a Microftalmía/genética , Proteínas Asociadas a Microtúbulos/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Mitofagia/genética , Complejos Multiproteicos/antagonistas & inhibidores , Fagosomas/metabolismo , Proteínas Quinasas/genética , Interferencia de ARN , ARN Interferente Pequeño , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión a GTP rab7
5.
ACS Chem Biol ; 10(5): 1188-97, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25689131

RESUMEN

Parkin, an E3 ubiquitin ligase, is a central mediator of mitochondrial quality control and is linked to familial forms of Parkinson's disease (PD). Removal of dysfunctional mitochondria from the cell by Parkin is thought to be neuroprotective, and pharmacologically increasing Parkin levels may be a novel therapeutic approach. We used genome-editing to integrate a coincidence reporter into the PARK2 gene locus of a neuroblastoma-derived cell line and developed a quantitative high-throughput screening (qHTS) assay capable of accurately detecting subtle compound-mediated increases in endogenous PARK2 expression. Interrogation of a chemogenomic library revealed diverse chemical classes that up-regulate the PARK2 transcript, including epigenetic agents, drugs controlling cholesterol biosynthesis, and JNK inhibitors. Use of the coincidence reporter eliminated wasted time pursuing reporter-biased false positives accounting for ∼2/3 of the actives and, coupled with titration-based screening, greatly improves the efficiency of compound selection. This approach represents a strategy to revitalize reporter-gene assays for drug discovery.


Asunto(s)
Perfilación de la Expresión Génica , Genes Reporteros , Genómica , Ubiquitina-Proteína Ligasas/genética , Línea Celular Tumoral , Colesterol/biosíntesis , Epigénesis Genética , Ensayos Analíticos de Alto Rendimiento , Humanos , MAP Quinasa Quinasa 4/antagonistas & inhibidores
6.
J Cell Biol ; 205(2): 143-53, 2014 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-24751536

RESUMEN

PINK1 kinase activates the E3 ubiquitin ligase Parkin to induce selective autophagy of damaged mitochondria. However, it has been unclear how PINK1 activates and recruits Parkin to mitochondria. Although PINK1 phosphorylates Parkin, other PINK1 substrates appear to activate Parkin, as the mutation of all serine and threonine residues conserved between Drosophila and human, including Parkin S65, did not wholly impair Parkin translocation to mitochondria. Using mass spectrometry, we discovered that endogenous PINK1 phosphorylated ubiquitin at serine 65, homologous to the site phosphorylated by PINK1 in Parkin's ubiquitin-like domain. Recombinant TcPINK1 directly phosphorylated ubiquitin and phospho-ubiquitin activated Parkin E3 ubiquitin ligase activity in cell-free assays. In cells, the phosphomimetic ubiquitin mutant S65D bound and activated Parkin. Furthermore, expression of ubiquitin S65A, a mutant that cannot be phosphorylated by PINK1, inhibited Parkin translocation to damaged mitochondria. These results explain a feed-forward mechanism of PINK1-mediated initiation of Parkin E3 ligase activity.


Asunto(s)
Proteínas Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Sustitución de Aminoácidos , Animales , Línea Celular , Drosophila melanogaster , Activación Enzimática/fisiología , Humanos , Mutación Missense , Fosforilación/fisiología , Proteínas Quinasas/genética , Estructura Terciaria de Proteína , Ubiquitina/genética , Ubiquitina-Proteína Ligasas/genética
7.
Elife ; 3: e01612, 2014 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-24569479

RESUMEN

Damaged mitochondria can be selectively eliminated by mitophagy. Although two gene products mutated in Parkinson's disease, PINK1, and Parkin have been found to play a central role in triggering mitophagy in mammals, how the pre-autophagosomal isolation membrane selectively and accurately engulfs damaged mitochondria remains unclear. In this study, we demonstrate that TBC1D15, a mitochondrial Rab GTPase-activating protein (Rab-GAP), governs autophagosome biogenesis and morphology downstream of Parkin activation. To constrain autophagosome morphogenesis to that of the cargo, TBC1D15 inhibits Rab7 activity and associates with both the mitochondria through binding Fis1 and the isolation membrane through the interactions with LC3/GABARAP family members. Another TBC family member TBC1D17, also participates in mitophagy and forms homodimers and heterodimers with TBC1D15. These results demonstrate that TBC1D15 and TBC1D17 mediate proper autophagic encapsulation of mitochondria by regulating Rab7 activity at the interface between mitochondria and isolation membranes. DOI: http://dx.doi.org/10.7554/eLife.01612.001.


Asunto(s)
Autofagia , Proteínas Activadoras de GTPasa/metabolismo , Lisosomas/metabolismo , Mitocondrias/enzimología , Mitofagia , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis , Familia de las Proteínas 8 Relacionadas con la Autofagia , Proteínas Activadoras de GTPasa/genética , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Lisosomas/patología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mitocondrias/patología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Unión Proteica , Multimerización de Proteína , Transducción de Señal , Factores de Tiempo , Transfección , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión a GTP rab7
8.
Mol Cell Biol ; 33(18): 3675-88, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23878393

RESUMEN

During autophagy, a double membrane envelops cellular material for trafficking to the lysosome. Human beclin-1 and its yeast homologue, Atg6/Vps30, are scaffold proteins bound in a lipid kinase complex with multiple cellular functions, including autophagy. Several different Atg6 complexes exist, with an autophagy-specific form containing Atg14. However, the roles of Atg14 and beclin-1 in the activation of this complex remain unclear. We here addressed the mechanism of beclin-1 complex activation and reveal two critical steps in this pathway. First, we identified a unique domain in beclin-1, conserved in the yeast homologue Atg6, which is involved in membrane association and, unexpectedly, controls autophagosome size and number in yeast. Second, we demonstrated that human Atg14 is critical in controlling an autophagy-dependent phosphorylation of beclin-1. We map these novel phosphorylation sites to serines 90 and 93 and demonstrate that phosphorylation at these sites is necessary for maximal autophagy. These results help clarify the mechanism of beclin-1 and Atg14 during autophagy.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia/fisiología , Proteínas de la Membrana/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/química , Proteínas Adaptadoras del Transporte Vesicular/genética , Secuencia de Aminoácidos , Proteínas Reguladoras de la Apoptosis/química , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Relacionadas con la Autofagia , Beclina-1 , Sitios de Unión , Línea Celular , Técnicas de Inactivación de Genes , Humanos , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Fagosomas/metabolismo , Fosforilación , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Serina/química
9.
EMBO J ; 30(23): 4728-38, 2011 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-21926970

RESUMEN

Synapses are specialized adhesion sites between neurons that are connected by protein complexes spanning the synaptic cleft. These trans-synaptic interactions can organize synapse formation, but their macromolecular properties and effects on synaptic morphology remain incompletely understood. Here, we demonstrate that the synaptic cell adhesion molecule SynCAM 1 self-assembles laterally via its extracellular, membrane-proximal immunoglobulin (Ig) domains 2 and 3. This cis oligomerization generates SynCAM oligomers with increased adhesive capacity and instructs the interactions of this molecule across the nascent and mature synaptic cleft. In immature neurons, cis assembly promotes the adhesive clustering of SynCAM 1 at new axo-dendritic contacts. Interfering with the lateral self-assembly of SynCAM 1 in differentiating neurons strongly impairs its synaptogenic activity. At later stages, the lateral oligomerization of SynCAM 1 restricts synaptic size, indicating that this adhesion molecule contributes to the structural organization of synapses. These results support that lateral interactions assemble SynCAM complexes within the synaptic cleft to promote synapse induction and modulate their structure. These findings provide novel insights into synapse development and the adhesive mechanisms of Ig superfamily members.


Asunto(s)
Moléculas de Adhesión Celular , Inmunoglobulinas , Neuritas/metabolismo , Estructura Cuaternaria de Proteína/fisiología , Sinapsis/metabolismo , Animales , Células COS , Adhesión Celular/fisiología , Molécula 1 de Adhesión Celular , Moléculas de Adhesión Celular/química , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular Neuronal/química , Moléculas de Adhesión Celular Neuronal/metabolismo , Diferenciación Celular/fisiología , Células Cultivadas , Chlorocebus aethiops , Técnicas de Cocultivo , Transferencia Resonante de Energía de Fluorescencia , Células HEK293 , Hipocampo/citología , Humanos , Inmunoglobulinas/química , Inmunoglobulinas/metabolismo , Inmunohistoquímica , Ratones
10.
Endocrinology ; 152(6): 2364-76, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21486934

RESUMEN

Female sexual maturation requires erythroblastosis B (erbB)4 signaling in hypothalamic astrocytes; however, the mechanisms by which erbB4 contributes to this process are incompletely understood. Here we show that SynCAM1, a synaptic adhesion molecule with signaling capabilities, is not only expressed highly in neurons, but also in hypothalamic astrocytes and is functionally associated with erbB4 receptor activity. Whereas SynCAM1 expression is diminished in astrocytes with impaired erbB4 signaling, ligand-dependent activation of astroglial erbB4 receptors results in rapid association of erbB4 with SynCAM1 and activation of SynCAM1 gene transcription. To determine whether astrocytic SynCAM1-dependent intracellular signaling is required for normal female reproductive function, we generated transgenic mice that express in an astrocyte-specific manner a dominant-negative form of SynCAM1 lacking the intracellular domain. The mutant protein was correctly targeted to the cell membrane and was functionally viable as shown by its ability to block intracellular calcium/calmodulin-dependent serine protein kinase redistribution, a major SynCAM1-mediated event. Dominant-negative-SynCAM1 female mice had a delayed onset of puberty, disrupted estrous cyclicity, and reduced fecundity. These deficits were associated with a reduced capacity of neuregulin-dependent erbB4 receptor activation to elicit prostaglandin E2 release from astrocytes and GnRH release from the hypothalamus. We conclude that one of the mechanisms underlying erbB4 receptor-mediated facilitation of glial-neuronal interactions in the neuroendocrine brain involves SynCAM1-dependent signaling and that this interaction is required for normal female reproductive function.


Asunto(s)
Astrocitos/metabolismo , Receptores ErbB/metabolismo , Ratones/metabolismo , Desarrollo Sexual , Animales , Astrocitos/citología , Encéfalo/citología , Encéfalo/metabolismo , Dinoprostona/metabolismo , Receptores ErbB/genética , Femenino , Hormona Liberadora de Gonadotropina/metabolismo , Ratones/genética , Ratones/crecimiento & desarrollo , Ratones Transgénicos , Unión Proteica , Receptor ErbB-4 , Transducción de Señal
11.
Neuron ; 68(5): 894-906, 2010 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-21145003

RESUMEN

Synaptogenesis is required for wiring neuronal circuits in the developing brain and continues to remodel adult networks. However, the molecules organizing synapse development and maintenance in vivo remain incompletely understood. We now demonstrate that the immunoglobulin adhesion molecule SynCAM 1 dynamically alters synapse number and plasticity. Overexpression of SynCAM 1 in transgenic mice promotes excitatory synapse number, while loss of SynCAM 1 results in fewer excitatory synapses. By turning off SynCAM 1 overexpression in transgenic brains, we show that it maintains the newly induced synapses. SynCAM 1 also functions at mature synapses to alter their plasticity by regulating long-term depression. Consistent with these effects on neuronal connectivity, SynCAM 1 expression affects spatial learning, with knock-out mice learning better. The reciprocal effects of increased SynCAM 1 expression and loss reveal that this adhesion molecule contributes to the regulation of synapse number and plasticity, and impacts how neuronal networks undergo activity-dependent changes.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Inmunoglobulinas/metabolismo , Depresión Sináptica a Largo Plazo/fisiología , Aprendizaje por Laberinto/fisiología , Plasticidad Neuronal/fisiología , Sinapsis/metabolismo , Animales , Molécula 1 de Adhesión Celular , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Inmunoglobulinas/genética , Depresión Sináptica a Largo Plazo/genética , Ratones , Ratones de la Cepa 129 , Ratones Noqueados , Ratones Mutantes Neurológicos , Ratones Transgénicos , Plasticidad Neuronal/genética , Conducta Espacial , Sinapsis/genética , Membranas Sinápticas/genética , Membranas Sinápticas/metabolismo
12.
J Biol Chem ; 285(45): 34864-74, 2010 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-20739279

RESUMEN

Select adhesion molecules connect pre- and postsynaptic membranes and organize developing synapses. The regulation of these trans-synaptic interactions is an important neurobiological question. We have previously shown that the synaptic cell adhesion molecules (SynCAMs) 1 and 2 engage in homo- and heterophilic interactions and bridge the synaptic cleft to induce presynaptic terminals. Here, we demonstrate that site-specific N-glycosylation impacts the structure and function of adhesive SynCAM interactions. Through crystallographic analysis of SynCAM 2, we identified within the adhesive interface of its Ig1 domain an N-glycan on residue Asn(60). Structural modeling of the corresponding SynCAM 1 Ig1 domain indicates that its glycosylation sites Asn(70)/Asn(104) flank the binding interface of this domain. Mass spectrometric and mutational studies confirm and characterize the modification of these three sites. These site-specific N-glycans affect SynCAM adhesion yet act in a differential manner. Although glycosylation of SynCAM 2 at Asn(60) reduces adhesion, N-glycans at Asn(70)/Asn(104) of SynCAM 1 increase its interactions. The modification of SynCAM 1 with sialic acids contributes to the glycan-dependent strengthening of its binding. Functionally, N-glycosylation promotes the trans-synaptic interactions of SynCAM 1 and is required for synapse induction. These results demonstrate that N-glycosylation of SynCAM proteins differentially affects their binding interface and implicate post-translational modification as a mechanism to regulate trans-synaptic adhesion.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/química , Ácido N-Acetilneuramínico/química , Terminales Presinápticos/química , Animales , Células COS , Adhesión Celular/fisiología , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Chlorocebus aethiops , Cristalografía por Rayos X , Glicosilación , Humanos , Espectrometría de Masas , Mutación , Ácido N-Acetilneuramínico/genética , Ácido N-Acetilneuramínico/metabolismo , Terminales Presinápticos/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Estructura Terciaria de Proteína
13.
Proc Natl Acad Sci U S A ; 107(16): 7568-73, 2010 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-20368431

RESUMEN

Neuronal growth cones are highly motile structures that tip developing neurites and explore their surroundings before axo-dendritic contact and synaptogenesis. However, the membrane proteins organizing these processes remain insufficiently understood. Here we identify that the synaptic cell adhesion molecule 1 (SynCAM 1), an immunoglobulin superfamily member, is already expressed in developing neurons and localizes to their growth cones. Upon interaction of growth cones with target neurites, SynCAM 1 rapidly assembles at these contacts to form stable adhesive clusters. Synaptic markers can also be detected at these sites. Addressing the functions of SynCAM 1 in growth cones preceding contact, we determine that it is required and sufficient to restrict the number of active filopodia. Further, SynCAM 1 negatively regulates the morphological complexity of migrating growth cones. Focal adhesion kinase, a binding partner of SynCAM 1, is implicated in its morphogenetic activities. These results reveal that SynCAM 1 acts in developing neurons to shape migrating growth cones and contributes to the adhesive differentiation of their axo-dendritic contacts.


Asunto(s)
Axones/metabolismo , Moléculas de Adhesión Celular Neuronal/fisiología , Dendritas/metabolismo , Conos de Crecimiento/metabolismo , Inmunoglobulinas/fisiología , Proteínas de la Membrana/fisiología , Proteínas Supresoras de Tumor/fisiología , Animales , Molécula 1 de Adhesión Celular , Moléculas de Adhesión Celular , Moléculas de Adhesión Celular Neuronal/genética , Diferenciación Celular , Movimiento Celular , Concentración de Iones de Hidrógeno , Inmunoglobulinas/genética , Proteínas de la Membrana/genética , Ratones , Microscopía Confocal/métodos , Modelos Biológicos , Neuronas/metabolismo , Unión Proteica , Ratas , Proteínas Supresoras de Tumor/genética
14.
J Neurosci ; 27(46): 12516-30, 2007 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-18003830

RESUMEN

Synapses are asymmetric cell junctions with precisely juxtaposed presynaptic and postsynaptic sides. Transsynaptic adhesion complexes are thought to organize developing synapses. The molecular composition of these complexes, however, remains incompletely understood, precluding us from understanding how adhesion across the synaptic cleft guides synapse development. Here, we define two immunoglobulin superfamily members, SynCAM 1 and 2, that are expressed in neurons in the developing brain and localize to excitatory and inhibitory synapses. They function as cell adhesion molecules and assemble with each other across the synaptic cleft into a specific, transsynaptic SynCAM 1/2 complex. Additionally, SynCAM 1 and 2 promote functional synapses as they increase the number of active presynaptic terminals and enhance excitatory neurotransmission. The interaction of SynCAM 1 and 2 is affected by glycosylation, indicating regulation of this adhesion complex by posttranslational modification. The SynCAM 1/2 complex is representative for the highly defined adhesive patterns of this protein family, the four members of which are expressed in neurons in divergent expression profiles. SynCAMs 1, 2, and 3 each can bind themselves, yet preferentially assemble into specific, heterophilic complexes as shown for the synaptic SynCAM 1/2 interaction and a second complex comprising SynCAM 3 and 4. Our results define SynCAM proteins as components of novel heterophilic transsynaptic adhesion complexes that set up asymmetric interactions, with SynCAM proteins contributing to synapse organization and function.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Hipocampo/embriología , Hipocampo/metabolismo , Vías Nerviosas/embriología , Vías Nerviosas/metabolismo , Sinapsis/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Adhesión Celular/fisiología , Moléculas de Adhesión Celular , Diferenciación Celular/fisiología , Línea Celular , Células Cultivadas , Técnicas de Cocultivo , Hipocampo/ultraestructura , Humanos , Inmunoglobulinas , Sustancias Macromoleculares/metabolismo , Ratones , Vías Nerviosas/ultraestructura , Terminales Presinápticos/metabolismo , Terminales Presinápticos/ultraestructura , Isoformas de Proteínas/metabolismo , Ratas , Ratas Sprague-Dawley , Membranas Sinápticas/metabolismo , Membranas Sinápticas/ultraestructura , Transmisión Sináptica/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...