Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(8): e29206, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38628702

RESUMEN

A whale fall community of chemosymbiotic invertebrates living on cetacean bones has been identified off southwestern Australia during a Remotely Operated Vehicle (ROV) survey at bathyal depths within the Bremer Marine Park, which is part of important marine mammal areas (IMMA) of the Albany Canyon Region. Cetacean bones on the seafloor of the Hood Canyon, consisted of isolated skulls of three species of beaked whales (family Ziphiidae): Mesoplodon cf. layardii, M. grayi, and M. hectori, a few vertebrae, and lower jaws. One of the beaked whale skulls (Mesoplodon cf. layardii) was sampled and found to be intensely colonised by hundreds of specimens of a bathymodilinae mussel ("Adipicola" s.l.). Live polychaetes (Phyllochaetopterus?), skeneimorph gastropods, and amphipods (Seba, Leptamphopus) colonised the skull bone, which represent a later stage (sulfophilic) of carcass decomposition. The reducing sediment below the skull was inhabited by lucinid (Lucinoma) and vesicomyid (Calyptogena) chemosymbiotic bivalves. Additionally, the sediment thanatocoenosis comprised shells of various other chemosymbiotic bivalves, such as Acharax, thyasirids, lucinids, vesicomyids, and limpets, representing the complex ecological turnover phases through time in this whale fall chemosynthetic habitat. With one exception, all bones recovered were colonized by bathymodiolin mussels. This is the first documented case of a chemosynthetic community and associated chemosymbiotic fauna relating to beaked whales, and the first fully documented record of a whale fall community within the Australian Southern Ocean region.

2.
Sci Total Environ ; 857(Pt 1): 159243, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36208760

RESUMEN

We assessed the anthropogenic impacts on southwestern Australian submarine canyons by quantifying macro-litter discovered during Remotely Operated Vehicle surveys. The study area encompasses the Bremer canyon systems and Perth Canyon. The categories of macro-litter identified by our study are plastic, metal, aluminium, glass, fabric, mixed, derelict fishing gear, and unclassified. The anthropogenic impacts in the canyons explored is minimal, especially in the Bremer canyon systems, whereas Perth Canyon has comparatively more macro-litter, presumably due to intense maritime traffic and nearby urban development. On a global scale, however, the environmental status of southwestern Australian canyons is relatively pristine. This analysis provides a baseline for the monitoring and enduring stewardship of these habitats where lush and diverse biota, including deep-sea corals, thrive.


Asunto(s)
Efectos Antropogénicos , Plásticos , Australia Occidental , Australia , Ecosistema , Monitoreo del Ambiente
3.
Sci Rep ; 11(1): 13985, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34294742

RESUMEN

This study provides new evidence of the presence of an ancient Roman road in correspondence to a paleobeach ridge now submerged in the Venice Lagoon (Italy). New high resolution underwater seafloor data shed new light on the significance of the Roman remains in the lagoon. The interpretation of the data through archive and geo-archaeological research allowed a three-dimensional architectural reconstruction of the Roman road. The presence of the ancient Roman road confirms the hypothesis of a stable system of Roman settlements in the Venice Lagoon. The study highlights the significance of this road in the broader context of the Roman transport system, demonstrating once more the Roman ability to adapt and to handle complex dynamic environments that were often radically different from today.

4.
Sensors (Basel) ; 19(10)2019 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-31100805

RESUMEN

Hyperspectral imagers enable the collection of high-resolution spectral images exploitable for the supervised classification of habitats and objects of interest (OOI). Although this is a well-established technology for the study of subaerial environments, Ecotone AS has developed an underwater hyperspectral imager (UHI) system to explore the properties of the seafloor. The aim of the project is to evaluate the potential of this instrument for mapping and monitoring benthic habitats in shallow and deep-water environments. For the first time, we tested this system at two sites in the Southern Adriatic Sea (Mediterranean Sea): the cold-water coral (CWC) habitat in the Bari Canyon and the Coralligenous habitat off Brindisi. We created a spectral library for each site, considering the different substrates and the main OOI reaching, where possible, the lower taxonomic rank. We applied the spectral angle mapper (SAM) supervised classification to map the areal extent of the Coralligenous and to recognize the major CWC habitat-formers. Despite some technical problems, the first results demonstrate the suitability of the UHI camera for habitat mapping and seabed monitoring, through the achievement of quantifiable and repeatable classifications.

5.
Sci Rep ; 9(1): 6615, 2019 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-31036875

RESUMEN

Coastal systems are among the most studied, most vulnerable, and economically most important ecosystems on Earth; nevertheless, little attention has been paid, so far, to the consequences of human activities on the shallow sea-floor of these environments. Here, we present a quantitative assessment of the effects of human actions on the floor of the tidal channels from the Venice Lagoon using 2500 kilometres of full coverage multibeam bathymetric mapping. Such extended dataset provides unprecedented evidence of pervasive human impacts, which extend far beyond the well known shrinking of salt marshes and artificial modifications of inlet geometries. Direct and indirect human imprints include dredging marks and fast-growing scours around anthropogenic structures built to protect the historical city of Venice from flooding. In addition, we document multiple effects of ship traffic (propeller-wash erosion, keel ploughing) and diffuse littering on the sea-floor. Particularly relevant, in view of the ongoing interventions on the lagoon morphology, is the evidence of the rapid morphological changes affecting the sea-floor and threatening the stability of anthropogenic structures.

6.
Sci Data ; 4: 170121, 2017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28872636

RESUMEN

Tidal channels are crucial for the functioning of wetlands, though their morphological properties, which are relevant for seafloor habitats and flow, have been understudied so far. Here, we release a dataset composed of Digital Terrain Models (DTMs) extracted from a total of 2,500 linear kilometres of high-resolution multibeam echosounder (MBES) data collected in 2013 covering the entire network of tidal channels and inlets of the Venice Lagoon, Italy. The dataset comprises also the backscatter (BS) data, which reflect the acoustic properties of the seafloor, and the tidal current fields simulated by means of a high-resolution three-dimensional unstructured hydrodynamic model. The DTMs and the current fields help define how morphological and benthic properties of tidal channels are affected by the action of currents. These data are of potential broad interest not only to geomorphologists, oceanographers and ecologists studying the morphology, hydrodynamics, sediment transport and benthic habitats of tidal environments, but also to coastal engineers and stakeholders for cost-effective monitoring and sustainable management of this peculiar shallow coastal system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...