Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(5): 114156, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38687642

RESUMEN

The maintenance of antigen-specific CD8+ T cells underlies the efficacy of vaccines and immunotherapies. Pathways contributing to CD8+ T cell loss are not completely understood. Uncovering the pathways underlying the limited persistence of CD8+ T cells would be of significant benefit for developing novel strategies of promoting T cell persistence. Here, we demonstrate that murine CD8+ T cells experience endoplasmic reticulum (ER) stress following activation and that the ER-associated degradation (ERAD) adapter Sel1L is induced in activated CD8+ T cells. Sel1L loss limits CD8+ T cell function and memory formation following acute viral infection. Mechanistically, Sel1L is required for optimal bioenergetics and c-Myc expression. Finally, we demonstrate that human CD8+ T cells experience ER stress upon activation and that ER stress is negatively associated with improved T cell functionality in T cell-redirecting therapies. Together, these results demonstrate that ER stress and ERAD are important regulators of T cell function and persistence.


Asunto(s)
Linfocitos T CD8-positivos , Estrés del Retículo Endoplásmico , Degradación Asociada con el Retículo Endoplásmico , Memoria Inmunológica , Animales , Humanos , Ratones , Enfermedad Aguda , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Coriomeningitis Linfocítica/inmunología , Coriomeningitis Linfocítica/virología , Coriomeningitis Linfocítica/patología , Ratones Endogámicos C57BL , Proteínas , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Masculino , Femenino
2.
Proc Natl Acad Sci U S A ; 121(17): e2318420121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38621136

RESUMEN

In response to an immune challenge, naive T cells undergo a transition from a quiescent to an activated state acquiring the effector function. Concurrently, these T cells reprogram cellular metabolism, which is regulated by iron. We and others have shown that iron homeostasis controls proliferation and mitochondrial function, but the underlying mechanisms are poorly understood. Given that iron derived from heme makes up a large portion of the cellular iron pool, we investigated iron homeostasis in T cells using mice with a T cell-specific deletion of the heme exporter, FLVCR1 [referred to as knockout (KO)]. Our finding revealed that maintaining heme and iron homeostasis is essential to keep naive T cells in a quiescent state. KO naive CD4 T cells exhibited an iron-overloaded phenotype, with increased spontaneous proliferation and hyperactive mitochondria. This was evidenced by reduced IL-7R and IL-15R levels but increased CD5 and Nur77 expression. Upon activation, however, KO CD4 T cells have defects in proliferation, IL-2 production, and mitochondrial functions. Iron-overloaded CD4 T cells failed to induce mitochondrial iron and exhibited more fragmented mitochondria after activation, making them susceptible to ferroptosis. Iron overload also led to inefficient glycolysis and glutaminolysis but heightened activity in the hexosamine biosynthetic pathway. Overall, these findings highlight the essential role of iron in controlling mitochondrial function and cellular metabolism in naive CD4 T cells, critical for maintaining their quiescent state.


Asunto(s)
Linfocitos T CD4-Positivos , Hierro , Ratones , Animales , Hierro/metabolismo , Mitocondrias/metabolismo , Transducción de Señal , Hemo/metabolismo
3.
Crit Care ; 27(1): 491, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-38098060

RESUMEN

BACKGROUND: Brain injury is a leading cause of morbidity and mortality in patients resuscitated from cardiac arrest. Mitochondrial dysfunction contributes to brain injury following cardiac arrest; therefore, therapies that limit mitochondrial dysfunction have the potential to improve neurological outcomes. Generation of reactive oxygen species (ROS) during ischemia-reperfusion injury in the brain is a critical component of mitochondrial injury and is dependent on hyperactivation of mitochondria following resuscitation. Our previous studies have provided evidence that modulating mitochondrial function with specific near-infrared light (NIR) wavelengths can reduce post-ischemic mitochondrial hyperactivity, thereby reducing brain injury during reperfusion in multiple small animal models. METHODS: Isolated porcine brain cytochrome c oxidase (COX) was used to investigate the mechanism of NIR-induced mitochondrial modulation. Cultured primary neurons from mice expressing mitoQC were utilized to explore the mitochondrial mechanisms related to protection with NIR following ischemia-reperfusion. Anesthetized pigs were used to optimize the delivery of NIR to the brain by measuring the penetration depth of NIR to deep brain structures and tissue heating. Finally, a model of out-of-hospital cardiac arrest with CPR in adult pigs was used to evaluate the translational potential of NIR as a noninvasive therapeutic approach to protect the brain after resuscitation. RESULTS: Molecular evaluation of enzyme activity during NIR irradiation demonstrated COX function was reduced in an intensity-dependent manner with a threshold of enzyme inhibition leading to a moderate reduction in activity without complete inhibition. Mechanistic interrogation in neurons demonstrated that mitochondrial swelling and upregulation of mitophagy were reduced with NIR treatment. NIR therapy in large animals is feasible, as NIR penetrates deep into the brain without substantial tissue heating. In a translational porcine model of CA/CPR, transcranial NIR treatment for two hours at the onset of return of spontaneous circulation (ROSC) demonstrated significantly improved neurological deficit scores and reduced histologic evidence of brain injury after resuscitation from cardiac arrest. CONCLUSIONS: NIR modulates mitochondrial function which improves mitochondrial dynamics and quality control following ischemia/reperfusion. Noninvasive modulation of mitochondria, achieved by transcranial treatment of the brain with NIR, mitigates post-cardiac arrest brain injury and improves neurologic functional outcomes.


Asunto(s)
Lesiones Encefálicas , Reanimación Cardiopulmonar , Enfermedades Mitocondriales , Paro Cardíaco Extrahospitalario , Humanos , Ratones , Animales , Porcinos , Mitocondrias , Isquemia , Modelos Animales de Enfermedad
4.
Mol Neurobiol ; 59(3): 1872-1881, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35028899

RESUMEN

Brain injury is the most common cause of death for patients resuscitated from cardiac arrest. Magnesium is an attractive neuroprotective compound which protects neurons from ischemic injury by reducing neuronal calcium overload via NMDA receptor modulation and preventing calcium-induced mitochondrial permeability transition. Intramuscular (IM) delivery of MgSO4 during CPR has the potential to target these mechanisms within an early therapeutic window. We hypothesize that IM MgSO4 administrated during CPR could achieve therapeutic serum magnesium levels within 15 min after ROSC and improve neurologic outcomes in a rat model of asphyxial cardiac arrest. Male Long Evans rats were subjected to 8-min asphyxial cardiac arrest and block randomized to receive placebo, 107 mg/kg, 215 mg/kg, or 430 mg/kg MgSO4 IM at the onset of CPR. Serum magnesium concentrations increased rapidly with IM delivery during CPR, achieving twofold to fourfold increase by 15 min after ROSC in all magnesium dose groups. Rats subjected to cardiac arrest or sham surgery were block randomized to treatment groups for assessment of neurological outcomes. We found that IM MgSO4 during CPR had no effect on ROSC rate (p > 0.05). IM MgSO4 treatment had no statistically significant effect on 10-day survival with good neurologic function or hippocampal CA1 pyramidal neuron survival compared to placebo treatment. In conclusion, a single dose IM MgSO4 during CPR achieves up to fourfold baseline serum magnesium levels within 15 min after ROSC; however, this treatment strategy did not improve survival, recovery of neurologic function, or neuron survival. Future studies with repeated dosing or in combination with hypothermic targeted temperature management may be indicated.


Asunto(s)
Reanimación Cardiopulmonar , Paro Cardíaco , Animales , Paro Cardíaco/tratamiento farmacológico , Paro Cardíaco/terapia , Sulfato de Magnesio/uso terapéutico , Masculino , Neuroprotección , Ratas , Ratas Long-Evans
5.
Cell Death Dis ; 12(5): 475, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33980811

RESUMEN

Mitochondrial dynamics and mitophagy are constitutive and complex systems that ensure a healthy mitochondrial network through the segregation and subsequent degradation of damaged mitochondria. Disruption of these systems can lead to mitochondrial dysfunction and has been established as a central mechanism of ischemia/reperfusion (I/R) injury. Emerging evidence suggests that mitochondrial dynamics and mitophagy are integrated systems; however, the role of this relationship in the context of I/R injury remains unclear. To investigate this concept, we utilized primary cortical neurons isolated from the novel dual-reporter mitochondrial quality control knockin mice (C57BL/6-Gt(ROSA)26Sortm1(CAG-mCherry/GFP)Ganl/J) with conditional knockout (KO) of Drp1 to investigate changes in mitochondrial dynamics and mitophagic flux during in vitro I/R injury. Mitochondrial dynamics was quantitatively measured in an unbiased manner using a machine learning mitochondrial morphology classification system, which consisted of four different classifications: network, unbranched, swollen, and punctate. Evaluation of mitochondrial morphology and mitophagic flux in primary neurons exposed to oxygen-glucose deprivation (OGD) and reoxygenation (OGD/R) revealed extensive mitochondrial fragmentation and swelling, together with a significant upregulation in mitophagic flux. Furthermore, the primary morphology of mitochondria undergoing mitophagy was classified as punctate. Colocalization using immunofluorescence as well as western blot analysis revealed that the PINK1/Parkin pathway of mitophagy was activated following OGD/R. Conditional KO of Drp1 prevented mitochondrial fragmentation and swelling following OGD/R but did not alter mitophagic flux. These data provide novel evidence that Drp1 plays a causal role in the progression of I/R injury, but mitophagy does not require Drp1-mediated mitochondrial fission.


Asunto(s)
Dinaminas/metabolismo , Dinámicas Mitocondriales/genética , Mitofagia/genética , Daño por Reperfusión/genética , Animales , Humanos , Ratones , Neuronas/metabolismo , Daño por Reperfusión/metabolismo
6.
Sci Rep ; 11(1): 5133, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33664336

RESUMEN

The mitochondrial network continually undergoes events of fission and fusion. Under physiologic conditions, the network is in equilibrium and is characterized by the presence of both elongated and punctate mitochondria. However, this balanced, homeostatic mitochondrial profile can change morphologic distribution in response to various stressors. Therefore, it is imperative to develop a method that robustly measures mitochondrial morphology with high accuracy. Here, we developed a semi-automated image analysis pipeline for the quantitation of mitochondrial morphology for both in vitro and in vivo applications. The image analysis pipeline was generated and validated utilizing images of primary cortical neurons from transgenic mice, allowing genetic ablation of key components of mitochondrial dynamics. This analysis pipeline was further extended to evaluate mitochondrial morphology in vivo through immunolabeling of brain sections as well as serial block-face scanning electron microscopy. These data demonstrate a highly specific and sensitive method that accurately classifies distinct physiological and pathological mitochondrial morphologies. Furthermore, this workflow employs the use of readily available, free open-source software designed for high throughput image processing, segmentation, and analysis that is customizable to various biological models.


Asunto(s)
Encéfalo/diagnóstico por imagen , Aprendizaje Automático , Mitocondrias/ultraestructura , Neuronas/ultraestructura , Animales , Encéfalo/metabolismo , Encéfalo/ultraestructura , Humanos , Procesamiento de Imagen Asistido por Computador , Ratones , Microscopía Electrónica de Rastreo , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Red Nerviosa/diagnóstico por imagen , Neuronas/metabolismo
7.
Neuroscience ; 412: 105-115, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31176702

RESUMEN

Intrinsically photosensitive retinal ganglion cells (ipRGCs) are critical for the light signaling properties of non-image forming vision. Melanopsin-expressing ipRGCs project to retinorecipient brain regions involved in modulating circadian rhythms. Melanopsin has been shown to play an important role in how animals respond to light, including photoentrainment, masking (i.e., acute behavioral responses to light), and the pupillary light reflex (PLR). Importantly, ipRGCs are resistant to various forms of damage, including ocular hypertension, optic nerve crush, and excitotoxicity via N-methyl-D-aspartic acid (NMDA) administration. Although these cells are resistant to various forms of injury, the question still remains whether or not these cells remain functional following injury. Here we tested the hypothesis that ipRGCs would be resistant to excitotoxic damage in a diurnal rodent model, the Nile grass rat (Arvicanthis niloticus). In addition, we hypothesized that following insult, grass rats would maintain normal circadian entrainment and masking to light. In order to test these hypotheses, we injected NMDA intraocularly and examined its effect on the survivability of ipRGCs and RGCs, along with testing behavioral and functional consequences. Similar to findings in nocturnal rodents, ipRGCs were spared from significant damage but RGCs were not. Importantly, whereas image-forming vision was significantly impaired, non-image forming vision (i.e, photoentrainment, masking, and PLR) remained functional. The present study aims to characterize the resistance of ipRGCs to excitotoxicity in a diurnal rodent model.


Asunto(s)
Ritmo Circadiano/fisiología , Células Ganglionares de la Retina/metabolismo , Opsinas de Bastones/metabolismo , Animales , Ritmo Circadiano/efectos de los fármacos , Femenino , Fototransducción/efectos de los fármacos , Fototransducción/fisiología , Murinae , N-Metilaspartato/toxicidad , Células Ganglionares de la Retina/efectos de los fármacos
8.
J Comp Psychol ; 133(2): 215-222, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30394785

RESUMEN

Environmental conditions, such as the light-dark cycle and temperature, affect the display of circadian rhythmicity and locomotor activity patterns in mammals. Here, we tested the hypothesis that manipulating these environmental conditions would affect wheel-running activity patterns in a diurnal rodent, the Nile grass rat (Arvicanthis niloticus). Grass rats are diurnal in the field, however, a subset switch from a day-active pattern to a night-active pattern of activity after the introduction of a running wheel. The mechanism of this chronotype switch remains largely unknown. In the present study, grass rats were presented with running wheels in 12:12 light-dark conditions. First, subjects were exposed to 25 °C during the day and 21 °C at night, which resulted in 100% of grass rats expressing diurnal behavior. Subjects were then exposed to manipulations of elevated ambient temperature, which resulted in a significant reduction in wheel-running activity. Reducing ambient temperature below 21 °C, however, did not disrupt the expression of diurnality or overall activity. Next, lighting intensity was reduced, which resulted in a switch from a diurnal to a nocturnal chronotype in a subset of animals and reduced overall wheel-running activity. Upon return to baseline lighting intensity, patterns of diurnal activity were restored. Altogether, increases in ambient temperature and decreases in lighting intensity significantly reduced overall wheel-running activity. Importantly, dim light resulted in a temporal niche switch in a subset of grass rats, suggesting a critical role for lighting intensity on the expression of wheel-running activity patterns. (PsycINFO Database Record (c) 2019 APA, all rights reserved).


Asunto(s)
Conducta Animal/fisiología , Ritmo Circadiano/fisiología , Actividad Motora/fisiología , Fotoperiodo , Temperatura , Animales , Muridae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA