Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Aging Cell ; 23(6): e14139, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38578073

RESUMEN

Age-induced decline in osteogenic potential of bone marrow mesenchymal stem cells (BMSCs) potentiates osteoporosis and increases the risk for bone fractures. Despite epidemiology studies reporting concurrent development of vascular and bone diseases in the elderly, the underlying mechanisms for the vascular-bone cross-talk in aging are largely unknown. In this study, we show that accelerated endothelial aging deteriorates bone tissue through paracrine repression of Wnt-driven-axis in BMSCs. Here, we utilize physiologically aged mice in conjunction with our transgenic endothelial progeria mouse model (Hutchinson-Gilford progeria syndrome; HGPS) that displays hallmarks of an aged bone marrow vascular niche. We find bone defects associated with diminished BMSC osteogenic differentiation that implicate the existence of angiocrine factors with long-term inhibitory effects. microRNA-transcriptomics of HGPS patient plasma combined with aged-vascular niche analyses in progeria mice reveal abundant secretion of Wnt-repressive microRNA-31-5p. Moreover, we show that inhibition of microRNA-31-5p as well as selective Wnt-activator CHIR99021 boosts the osteogenic potential of BMSCs through de-repression and activation of the Wnt-signaling, respectively. Our results demonstrate that the vascular niche significantly contributes to osteogenesis defects in aging and pave the ground for microRNA-based therapies of bone loss in elderly.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Vía de Señalización Wnt , Células Madre Mesenquimatosas/metabolismo , Animales , Ratones , Humanos , Comunicación Paracrina , MicroARNs/metabolismo , MicroARNs/genética , Envejecimiento/metabolismo , Ratones Transgénicos , Diferenciación Celular , Nicho de Células Madre
2.
Am J Physiol Gastrointest Liver Physiol ; 325(2): G184-G195, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37366543

RESUMEN

There is increasing evidence for the importance of the nuclear envelope in lipid metabolism, nonalcoholic fatty liver disease (NAFLD), and nonalcoholic steatohepatitis (NASH). Human mutations in LMNA, encoding A-type nuclear lamins, cause early-onset insulin resistance and NASH, while hepatocyte-specific deletion of Lmna predisposes to NASH with fibrosis in male mice. Given that variants in the gene encoding LAP2α, a nuclear protein that regulates lamin A/C, were previously identified in patients with NAFLD, we sought to determine the role of LAP2α in NAFLD using a mouse genetic model. Hepatocyte-specific Lap2α-knockout (Lap2α(ΔHep)) mice and littermate controls were fed normal chow or high-fat diet (HFD) for 8 wk or 6 mo. Unexpectedly, male Lap2α(ΔHep) mice showed no increase in hepatic steatosis or NASH compared with controls. Rather, Lap2α(ΔHep) mice demonstrated reduced hepatic steatosis, with decreased NASH and fibrosis after long-term HFD. Accordingly, pro-steatotic genes including Cidea, Mogat1, and Cd36 were downregulated in Lap2α(ΔHep) mice, along with concomitant decreases in expression of pro-inflammatory and pro-fibrotic genes. These data indicate that hepatocyte-specific Lap2α deletion protects against hepatic steatosis and NASH in mice and raise the possibility that LAP2α could become a potential therapeutic target in human NASH.NEW & NOTEWORTHY The nuclear envelope and lamina regulate lipid metabolism and susceptibility to nonalcoholic steatohepatitis (NASH), but the role of the nuclear lamin-binding protein LAP2α in NASH has not been explored. Our data demonstrate that hepatocyte-specific loss of LAP2α protects against diet-induced hepatic steatosis, NASH, and fibrosis in male mice, with downregulation of pro-steatotic, pro-inflammatory, and pro-fibrotic lamin-regulated genes. These findings suggest that targeting LAP2α could have future potential as a novel therapeutic avenue in NASH.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Masculino , Ratones , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Hepatocitos/metabolismo , Laminas/metabolismo , Hígado/metabolismo , Cirrosis Hepática/genética , Cirrosis Hepática/prevención & control , Cirrosis Hepática/metabolismo , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/prevención & control
3.
Mol Biol Cell ; 33(13): ar121, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36001365

RESUMEN

Keratin intermediate filaments convey mechanical stability and protection against stress to epithelial cells. Keratins are essential for colon health, as seen in keratin 8 knockout (K8-/-) mice exhibiting a colitis phenotype. We hypothesized that keratins support the nuclear envelope and lamina in colonocytes. K8-/- colonocytes in vivo exhibit significantly decreased levels of lamins A/C, B1, and B2 in a colon-specific and cell-intrinsic manner. CRISPR/Cas9- or siRNA-mediated K8 knockdown in Caco-2 cells similarly decreased lamin levels, which recovered after reexpression of K8 following siRNA treatment. Nuclear area was not decreased, and roundness was only marginally increased in cells without K8. Down-regulation of K8 in adult K8flox/flox;Villin-CreERt2 mice following tamoxifen administration significantly decreased lamin levels at day 4 when K8 levels had reduced to 40%. K8 loss also led to reduced levels of plectin, LINC complex, and lamin-associated proteins. While keratins were not seen in the nucleoplasm without or with leptomycin B treatment, keratins were found intimately located at the nuclear envelope and complexed with SUN2 and lamin A. Furthermore, K8 loss in Caco-2 cells compromised nuclear membrane integrity basally and after shear stress. In conclusion, colonocyte K8 helps maintain nuclear envelope and lamina composition and contributes to nuclear integrity.


Asunto(s)
Queratina-8 , Queratinas , Animales , Células CACO-2 , Colon/metabolismo , Proteínas del Citoesqueleto/metabolismo , Células Epiteliales/metabolismo , Humanos , Queratina-8/genética , Queratinas/metabolismo , Lamina Tipo A/metabolismo , Ratones , Membrana Nuclear/metabolismo , Plectina/metabolismo , ARN Interferente Pequeño/metabolismo , Tamoxifeno
4.
Genome Biol ; 23(1): 64, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35227284

RESUMEN

BACKGROUND: Single-stranded DNA (ssDNA) coated with replication protein A (RPA) acts as a key platform for the recruitment and exchange of genome maintenance factors in DNA damage response. Yet, how the formation of the ssDNA-RPA intermediate is regulated remains elusive. RESULTS: Here, we report that the lamin-associated protein LAP2α is physically associated with RPA, and LAP2α preferentially facilitates RPA deposition on damaged chromatin via physical contacts between LAP2α and RPA1. Importantly, LAP2α-promoted RPA binding to ssDNA plays a critical role in protection of replication forks, activation of ATR, and repair of damaged DNA. We further demonstrate that the preference of LAP2α-promoted RPA loading on damaged chromatin depends on poly ADP-ribose polymerase PARP1, but not poly(ADP-ribosyl)ation. CONCLUSIONS: Our study provides mechanistic insight into RPA deposition in response to DNA damage and reveals a genome protection role of LAP2α.


Asunto(s)
Cromatina , Proteína de Replicación A , Daño del ADN , Reparación del ADN , Replicación del ADN , ADN de Cadena Simple , Proteínas de Unión al ADN/metabolismo , Proteínas de la Membrana/genética , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo
5.
Sci Rep ; 12(1): 2306, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35145145

RESUMEN

Myocardin-related transcription factor A (MRTF-A), a coactivator of serum response factor (SRF), regulates the expression of many cytoskeletal genes in response to cytoplasmic and nuclear actin dynamics. Here we describe a novel mechanism to regulate MRTF-A activity within the nucleus by showing that lamina-associated polypeptide 2α (Lap2α), the nucleoplasmic isoform of Lap2, is a direct binding partner of MRTF-A, and required for the efficient expression of MRTF-A/SRF target genes. Mechanistically, Lap2α is not required for MRTF-A nuclear localization, unlike most other MRTF-A regulators, but is required for efficient recruitment of MRTF-A to its target genes. This regulatory step takes place prior to MRTF-A chromatin binding, because Lap2α neither interacts with, nor specifically influences active histone marks on MRTF-A/SRF target genes. Phenotypically, Lap2α is required for serum-induced cell migration, and deregulated MRTF-A activity may also contribute to muscle and proliferation phenotypes associated with loss of Lap2α. Our studies therefore add another regulatory layer to the control of MRTF-A-SRF-mediated gene expression, and broaden the role of Lap2α in transcriptional regulation.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas de Unión al ADN/fisiología , Regulación de la Expresión Génica/genética , Proteínas de la Membrana/fisiología , Transactivadores/genética , Transactivadores/metabolismo , Actinas/metabolismo , Animales , Movimiento Celular/genética , Cromatina , Citoplasma/metabolismo , Citoesqueleto/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Células 3T3 NIH , Unión Proteica/genética , Factor de Respuesta Sérica/genética , Factor de Respuesta Sérica/metabolismo , Transactivadores/fisiología , Transcripción Genética/genética
6.
Aging (Albany NY) ; 14(1): 195-224, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-35020601

RESUMEN

Endothelial defects significantly contribute to cardiovascular pathology in the premature aging disease Hutchinson-Gilford progeria syndrome (HGPS). Using an endothelium-specific progeria mouse model, we identify a novel, endothelium-specific microRNA (miR) signature linked to the p53-senescence pathway and a senescence-associated secretory phenotype (SASP). Progerin-expressing endothelial cells exert profound cell-non-autonomous effects initiating senescence in non-endothelial cell populations and causing immune cell infiltrates around blood vessels. Comparative miR expression analyses revealed unique upregulation of senescence-associated miR34a-5p in endothelial cells with strong accumulation at atheroprone aortic arch regions but also, in whole cardiac- and lung tissues as well as in the circulation of progeria mice. Mechanistically, miR34a-5p knockdown reduced not only p53 levels but also late-stage senescence regulator p16 with no effect on p21 levels, while p53 knockdown reduced miR34a-5p and partially rescued p21-mediated cell cycle inhibition with a moderate effect on SASP. These data demonstrate that miR34a-5p reinforces two separate senescence regulating branches in progerin-expressing endothelial cells, the p53- and p16-associated pathways, which synergistically maintain a senescence phenotype that contributes to cardiovascular pathology. Thus, the key function of circulatory miR34a-5p in endothelial dysfunction-linked cardiovascular pathology offers novel routes for diagnosis, prognosis and treatment for cardiovascular aging in HGPS and potentially geriatric patients.


Asunto(s)
Endotelio Vascular/metabolismo , Regulación de la Expresión Génica/fisiología , Lamina Tipo A/metabolismo , MicroARNs/metabolismo , Progeria/metabolismo , Regulación hacia Arriba/fisiología , Envejecimiento , Animales , Aorta Torácica/metabolismo , Aorta Torácica/patología , Aterosclerosis/metabolismo , Senescencia Celular , Regulación hacia Abajo , Lamina Tipo A/genética , Ratones , MicroARNs/genética , Comunicación Paracrina/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
7.
Elife ; 102021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33605210

RESUMEN

Lamins form stable filaments at the nuclear periphery in metazoans. Unlike B-type lamins, lamins A and C localize also in the nuclear interior, where they interact with lamin-associated polypeptide 2 alpha (LAP2α). Using antibody labeling, we previously observed a depletion of nucleoplasmic A-type lamins in mouse cells lacking LAP2α. Here, we show that loss of LAP2α actually causes formation of larger, biochemically stable lamin A/C structures in the nuclear interior that are inaccessible to lamin A/C antibodies. While nucleoplasmic lamin A forms from newly expressed pre-lamin A during processing and from soluble mitotic lamins in a LAP2α-independent manner, binding of LAP2α to lamin A/C during interphase inhibits formation of higher order structures, keeping nucleoplasmic lamin A/C in a mobile state independent of lamin A/C S22 phosphorylation. We propose that LAP2α is essential to maintain a mobile lamin A/C pool in the nuclear interior, which is required for proper nuclear functions.


Asunto(s)
Proteínas de Unión al ADN/genética , Lamina Tipo A/genética , Proteínas de la Membrana/genética , Animales , Línea Celular , Núcleo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Lamina Tipo A/metabolismo , Proteínas de la Membrana/metabolismo , Ratones
8.
Cells ; 9(2)2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32085595

RESUMEN

LAP2-Emerin-MAN1 (LEM) domain-containing proteins represent an abundant group of inner nuclear membrane proteins involved in diverse nuclear functions, but their functional redundancies remain unclear. Here, using the biotinylation-dependent proximity approach, we report proteome-wide comparative interactome analysis of the two structurally related LEM proteins MAN1 (LEMD3) and LEM2 (LEMD2), and the more distantly related emerin (EMD). While over 60% of the relatively small group of MAN1 and emerin interactors were also found in the LEM2 interactome, the latter included a large number of candidates (>85%) unique for LEM2. The interacting partners unique for emerin support and provide further insight into the previously reported role of emerin in centrosome positioning, and the MAN1-specific interactors suggest a role of MAN1 in ribonucleoprotein complex assembly. Interestingly, the LEM2-specific interactome contained several proteins of the nucleotide excision repair pathway. Accordingly, LEM2-depleted cells, but not MAN1- and emerin-depleted cells, showed impaired proliferation following ultraviolet-C (UV-C) irradiation and prolonged accumulation of γH2AX, similar to cells deficient in the nucleotide excision repair protein DNA damage-binding protein 1 (DDB1). These findings indicate impaired DNA damage repair in LEM2-depleted cells. Overall, this interactome study identifies new potential interaction partners of emerin, MAN1 and particularly LEM2, and describes a novel potential involvement of LEM2 in nucleotide excision repair at the nuclear periphery.


Asunto(s)
Reparación del ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Proliferación Celular/efectos de la radiación , Centrosoma/metabolismo , Reparación del ADN/efectos de la radiación , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Histonas/metabolismo , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Dominios Proteicos , Transfección , Rayos Ultravioleta
9.
Mol Biol Cell ; 30(15): 1786-1790, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31306095

RESUMEN

Laminopathies are a diverse group of rare diseases with various pathologies in different tissues, which are linked to mutations in the LMNA gene. Historically, the structural disease model proposed mechanical defects of the lamina and nuclear fragility, the gene expression model impairment of spatial chromatin organization and signaling pathways as underlying mechanisms leading to the pathologies. Exciting findings in the past few years showing that mechanical forces are directly transmitted into the nucleus, where they affect chromatin organization and mechanoresponsive signaling molecules, have led to a revised concept of an integrative unified disease model, in which lamin-mediated pathways in mechanotransduction and chromatin regulation are highly interconnected and mutually dependent. In this Perspective we highlight breakthrough findings providing new insight into lamin-linked mechanisms of mechanotransduction and chromatin regulation and discuss how a combined and interrelated impairment of these functions by LMNA mutations may impair the complex mechanosignaling network and cause tissue-specific pathologies in laminopathies.


Asunto(s)
Regulación de la Expresión Génica , Lamina Tipo A/química , Lamina Tipo A/genética , Modelos Biológicos , Enfermedades Musculares/genética , Animales , Humanos , Mecanotransducción Celular
11.
J Clin Invest ; 129(2): 531-545, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30422822

RESUMEN

Hutchinson-Gilford progeria syndrome (HGPS) is a premature aging disorder characterized by accelerated cardiovascular disease with extensive fibrosis. It is caused by a mutation in LMNA leading to expression of truncated prelamin A (progerin) in the nucleus. To investigate the contribution of the endothelium to cardiovascular HGPS pathology, we generated an endothelium-specific HGPS mouse model with selective endothelial progerin expression. Transgenic mice develop interstitial myocardial and perivascular fibrosis and left ventricular hypertrophy associated with diastolic dysfunction and premature death. Endothelial cells show impaired shear stress response and reduced levels of endothelial nitric oxide synthase (eNOS) and NO. On the molecular level, progerin impairs nucleocytoskeletal coupling in endothelial cells through changes in mechanoresponsive components at the nuclear envelope, increased F-actin/G-actin ratios, and deregulation of mechanoresponsive myocardin-related transcription factor-A (MRTFA). MRTFA binds to the Nos3 promoter and reduces eNOS expression, thereby mediating a profibrotic paracrine response in fibroblasts. MRTFA inhibition rescues eNOS levels and ameliorates the profibrotic effect of endothelial cells in vitro. Although this murine model lacks the key anatomical feature of vascular smooth muscle cell loss seen in HGPS patients, our data show that progerin-induced impairment of mechanosignaling in endothelial cells contributes to excessive fibrosis and cardiovascular disease in HGPS patients.


Asunto(s)
Células Endoteliales/metabolismo , Hipertrofia Ventricular Izquierda/metabolismo , Lamina Tipo A/biosíntesis , Mecanotransducción Celular , Miocardio/metabolismo , Elementos de Respuesta , Transactivadores/metabolismo , Animales , Modelos Animales de Enfermedad , Células Endoteliales/patología , Fibrosis , Humanos , Hipertrofia Ventricular Izquierda/genética , Hipertrofia Ventricular Izquierda/patología , Lamina Tipo A/genética , Ratones , Ratones Transgénicos , Miocardio/patología , Óxido Nítrico/biosíntesis , Óxido Nítrico/genética , Óxido Nítrico Sintasa de Tipo III/biosíntesis , Óxido Nítrico Sintasa de Tipo III/genética , Transactivadores/genética
12.
J Cell Sci ; 131(3)2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29361532

RESUMEN

A-type lamins are components of the peripheral nuclear lamina but also localize in the nuclear interior in a complex with lamina-associated polypeptide (LAP) 2α. Loss of LAP2α and nucleoplasmic lamins in wild-type cells increases cell proliferation, but in cells expressing progerin (a mutant lamin A that causes Hutchinson-Gilford progeria syndrome), low LAP2α levels result in proliferation defects. Here, the aim was to understand the molecular mechanism governing how relative levels of LAP2α, progerin and nucleoplasmic lamins affect cell proliferation. Cells from progeria patients and inducible progerin-expressing cells expressing low levels of progerin proliferate faster than wild-type or lamin A-expressing control cells, and ectopic expression of LAP2α impairs proliferation. In contrast, cells expressing high levels of progerin and lacking lamins in the nuclear interior proliferate more slowly, and ectopic LAP2α expression enhances proliferation. However, simultaneous expression of LAP2α and wild-type lamin A or an assembly-deficient lamin A mutant restored the nucleoplasmic lamin A pool in these cells and abolished the growth-promoting effect of LAP2α. Our data show that LAP2α promotes or inhibits proliferation of progeria cells depending on the level of A-type lamins in the nuclear interior.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Laminas/metabolismo , Proteínas de la Membrana/metabolismo , Progeria/metabolismo , Progeria/patología , Ciclo Celular , Núcleo Celular/metabolismo , Proliferación Celular , Células Cultivadas , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Lamina Tipo A/metabolismo
14.
J Cell Sci ; 130(13): 2087-2096, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28668931

RESUMEN

Nuclear lamins are components of the peripheral lamina that define the mechanical properties of nuclei and tether heterochromatin to the periphery. A-type lamins localize also to the nuclear interior, but the regulation and specific functions of this nucleoplasmic lamin pool are poorly understood. In this Commentary, we summarize known pathways that are potentially involved in the localization and dynamic behavior of intranuclear lamins, including their post-translational modifications and interactions with nucleoplasmic proteins, such as lamina-associated polypeptide 2α (LAP2α; encoded by TMPO). In addition, new data suggest that lamins in the nuclear interior have an important role in chromatin regulation and gene expression through dynamic binding to both hetero- and euchromatic genomic regions and promoter subdomains, thereby affecting epigenetic pathways and chromatin accessibility. Nucleoplasmic lamins also have a role in spatial chromatin organization and may be involved in mechanosignaling. In view of this newly emerging concept, we propose that the previously reported cellular phenotypes in lamin-linked diseases are, at least in part, rooted in an impaired regulation and/or function of the nucleoplasmic lamin A/C pool.


Asunto(s)
Núcleo Celular/genética , Proteínas de Unión al ADN/genética , Lamina Tipo A/genética , Laminas/genética , Proteínas de la Membrana/genética , Heterocromatina/genética , Humanos , Lamina Tipo A/metabolismo , Laminas/metabolismo , Lámina Nuclear/genética , Lámina Nuclear/metabolismo , Procesamiento Proteico-Postraduccional/genética , Transducción de Señal
15.
Differentiation ; 94: 58-70, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28056360

RESUMEN

Peripheral heterochromatin in mammalian nuclei is tethered to the nuclear envelope by at least two mechanisms here referred to as the A- and B-tethers. The A-tether includes lamins A/C and additional unknown components presumably INM protein(s) interacting with both lamins A/C and chromatin. The B-tether includes the inner nuclear membrane (INM) protein Lamin B-receptor, which binds B-type lamins and chromatin. Generally, at least one of the tethers is always present in the nuclear envelope of mammalian cells. Deletion of both causes the loss of peripheral heterochromatin and consequently inversion of the entire nuclear architecture, with this occurring naturally in rod photoreceptors of nocturnal mammals. The tethers are differentially utilized during development, regulate gene expression in opposite manners, and play an important role during cell differentiation. Here we aimed to identify the unknown chromatin binding component(s) of the A-tether. We analyzed 10 mouse tissues by immunostaining with antibodies against 7 INM proteins and found that every cell type has specific, although differentially and developmentally regulated, sets of these proteins. In particular, we found that INM protein LEMD2 is concomitantly expressed with A-type lamins in various cell types but is lacking in inverted nuclei of rod cells. Truncation or deletion of Lmna resulted in the downregulation and mislocalization of LEMD2, suggesting that the two proteins interact and pointing at LEMD2 as a potential chromatin binding mediator of the A-tether. Using nuclei of mouse rods as an experimental model lacking peripheral heterochromatin, we expressed a LEMD2 transgene alone or in combination with lamin C in these cells and observed no restoration of peripheral heterochromatin in either case. We conclude that in contrary to the B-tether, the A-tether has a more intricate composition and consists of multiple components that presumably vary, at differing degrees of redundancy, between cell types and differentiation stages.


Asunto(s)
Núcleo Celular/genética , Lamina Tipo A/genética , Proteínas de la Membrana/genética , Membrana Nuclear/genética , Proteínas Nucleares/genética , Animales , Diferenciación Celular/genética , Núcleo Celular/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Lamina Tipo A/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Transgenes
16.
J Cell Sci ; 129(20): 3770-3780, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27566164

RESUMEN

The nuclear envelope is a barrier comprising outer and inner membranes that separate the cytoplasm from the nucleoplasm. The two membranes have different physical characteristics and protein compositions. The processes governing the stability of inner nuclear membrane (INM) proteins are not well characterized. In Saccharomyces cerevisiae, the INM Asi1-Asi3 complex, principally composed of integral membrane proteins Asi1 and Asi3, is an E3 ubiquitin ligase. In addition to its well-documented function in endoplasmic reticulum (ER)-associated degradation, the Doa10 E3 ubiquitin ligase complex partially localizes to the INM. The Asi1-Asi3 and Doa10 complexes define independent INM-associated degradation (INMAD) pathways that target discrete sets of nuclear substrates for proteasomal degradation. Here, we report that Asi1 is rapidly turned over (t1/2≤30 min). Its turnover depends on ubiquitin-mediated degradation by nucleus-localized proteasomes, exhibiting a clear requirement for the E2 ubiquitin-conjugating enzyme Ubc7, Cue1 and the AAA ATPase Cdc48 and co-factor Ubx1. Asi1 turnover occurs largely independently of the Asi1-Asi3 or Doa10 complexes, indicating that it is subject to quality control at the INM in a manner distinct from that of the characterized INMAD pathways.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Membrana Nuclear/metabolismo , Proteolisis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Núcleo Celular/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Pruebas Genéticas , Modelos Biológicos , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteína que Contiene Valosina
17.
BMC Cell Biol ; 17(1): 23, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27245214

RESUMEN

BACKGROUND: Ankyrin repeats and LEM domain containing protein 1 (Ankle1) belongs to the LEM protein family, whose members share a chromatin-interacting LEM motif. Unlike most other LEM proteins, Ankle1 is not an integral protein of the inner nuclear membrane but shuttles between the nucleus and the cytoplasm. It contains a GIY-YIG-type nuclease domain, but its function is unknown. The mammalian genome encodes only one other GIY-YIG domain protein, termed Slx1. Slx1 has been described as a resolvase that processes Holliday junctions during homologous recombination-mediated DNA double strand break repair. Resolvase activity is regulated in a spatial and temporal manner during the cell cycle. We hypothesized that Ankle1 may have a similar function and its nucleo-cytoplasmic shuttling may contribute to the regulation of Ankle1 activity. Hence, we aimed at identifying the domains mediating Ankle1 shuttling and investigating whether cellular localization is affected during DNA damage response. RESULTS: Sequence analysis predicts the presence of two canonical nuclear import and export signals in Ankle1. Immunofluorescence microscopy of cells expressing wild-type and various mutated Ankle1-fusion proteins revealed a C-terminally located classical monopartite nuclear localization signal and a centrally located CRM1-dependent nuclear export signal that mediate nucleo-cytoplasmic shuttling of Ankle1. These sequences are also functional in heterologous proteins. The predominant localization of Ankle1 in the cytoplasm, however, does not change upon induction of several DNA damage response pathways throughout the cell cycle. CONCLUSIONS: We identified the domains mediating nuclear import and export of Ankle1. Ankle1's cellular localization was not affected following DNA damage.


Asunto(s)
Núcleo Celular/metabolismo , Endonucleasas/metabolismo , Señales de Exportación Nuclear , Señales de Localización Nuclear/metabolismo , Transporte Activo de Núcleo Celular/efectos de los fármacos , Línea Celular Tumoral , Núcleo Celular/efectos de los fármacos , Daño del ADN , Análisis Mutacional de ADN , Endonucleasas/química , Genes Reporteros , Humanos , Hidroxiurea/farmacología , Mitosis/efectos de los fármacos , Dominios Proteicos
18.
PLoS One ; 11(3): e0152278, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27010503

RESUMEN

Ankyrin repeat and LEM-domain containing protein 1 (ANKLE1) is a GIY-YIG endonuclease with unknown functions, mainly expressed in mouse hematopoietic tissues. To test its potential role in hematopoiesis we generated Ankle1-deficient mice. Ankle1Δ/Δ mice are viable without any detectable phenotype in hematopoiesis. Neither hematopoietic progenitor cells, myeloid and lymphoid progenitors, nor B and T cell development in bone marrow, spleen and thymus, are affected in Ankle1Δ/Δ-mice. Similarly embryonic stress erythropoiesis in liver and adult erythropoiesis in bone marrow and spleen appear normal. To test whether ANKLE1, like the only other known GIY-YIG endonuclease in mammals, SLX1, may contribute to Holliday junction resolution during DNA repair, Ankle1-deficient cells were exposed to various DNA-damage inducing agents. However, lack of Ankle1 did not affect cell viability and, unlike depletion of Slx1, Ankle1-deficiency did not increase sister chromatid exchange in Bloom helicase-depleted cells. Altogether, we show that lack of Ankle1 does neither affect mouse hematopoiesis nor DNA damage repair in mouse embryonic fibroblasts, indicating a redundant or non-essential function of ANKLE1 in mouse.


Asunto(s)
Endonucleasas/fisiología , Hematopoyesis/fisiología , Animales , Endonucleasas/genética , Citometría de Flujo , Técnicas de Silenciamiento del Gen , Ratones , Ratones Endogámicos C57BL , Polimorfismo de Nucleótido Simple , ARN Mensajero/genética
19.
Histochem Cell Biol ; 145(4): 401-17, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26847180

RESUMEN

Hutchinson-Gilford progeria syndrome (HGPS) is an extremely rare premature aging disease presenting many features resembling the normal aging process. HGPS patients die before the age of 20 years due to cardiovascular problems and heart failure. HGPS is linked to mutations in the LMNA gene encoding the intermediate filament protein lamin A. Lamin A is a major component of the nuclear lamina, a scaffold structure at the nuclear envelope that defines mechanochemical properties of the nucleus and is involved in chromatin organization and epigenetic regulation. Lamin A is also present in the nuclear interior where it fulfills lamina-independent functions in cell signaling and gene regulation. The most common LMNA mutation linked to HGPS leads to mis-splicing of the LMNA mRNA and produces a mutant lamin A protein called progerin that tightly associates with the inner nuclear membrane and affects the dynamic properties of lamins. Progerin expression impairs many important cellular processes providing insight into potential disease mechanisms. These include changes in mechanosignaling, altered chromatin organization and impaired genome stability, and changes in signaling pathways, leading to impaired regulation of adult stem cells, defective extracellular matrix production and premature cell senescence. In this review, we discuss these pathways and their potential contribution to the disease pathologies as well as therapeutic approaches used in preclinical and clinical tests.


Asunto(s)
Envejecimiento Prematuro/genética , Envejecimiento Prematuro/metabolismo , Progeria/genética , Progeria/metabolismo , Envejecimiento Prematuro/patología , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/patología , Senescencia Celular , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Mutación , Progeria/patología
20.
Nucleus ; 7(1): 41-9, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26760377

RESUMEN

An intricate machinery protects cells from the accumulation of misfolded, non-functional proteins and protein aggregates. Protein quality control pathways have been best described in the cytoplasm and the endoplasmic reticulum, however, recent findings indicate that the nucleus is also an important compartment for protein quality control. Several nuclear ubiquitinylation pathways target soluble and membrane proteins in the nucleus and mediate their degradation through nuclear proteasomes. In addition, emerging data suggest that nuclear envelope components are also degraded by autophagy, although the mechanisms by which cytoplasmic autophagy machineries get access to nuclear targets remain unclear. In this minireview we summarize the nuclear ubiquitin-proteasome pathways in yeast, focusing on pathways involved in the protein degradation at the inner nuclear membrane. In addition, we discuss potential mechanisms how nuclear targets at the nuclear envelope may be delivered to the cytoplasmic autophagy pathways in yeast and mammals.


Asunto(s)
Autofagia/fisiología , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Agregado de Proteínas , Proteolisis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA