Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Asian J Androl ; 25(1): 103-112, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35546286

RESUMEN

This study aims to characterize the cell atlas of the epididymis derived from a 46,XY disorders of sex development (DSD) patient with a novel heterozygous mutation of the nuclear receptor subfamily 5 group A member 1 (NR5A1) gene. Next-generation sequencing found a heterozygous c.124C>G mutation in NR5A1 that resulted in a p.Q42E missense mutation in the conserved DNA-binding domain of NR5A1. The patient demonstrated feminization of external genitalia and Tanner stage 1 breast development. The surgical procedure revealed a morphologically normal epididymis and vas deferens but a dysplastic testis. Microfluidic-based single-cell RNA sequencing (scRNA-seq) analysis found that the fibroblast cells were significantly increased (approximately 46.5%), whereas the number of main epididymal epithelial cells (approximately 9.2%), such as principal cells and basal cells, was dramatically decreased. Bioinformatics analysis of cell-cell communications and gene regulatory networks at the single-cell level inferred that epididymal epithelial cell loss and fibroblast occupation are associated with the epithelial-to-mesenchymal transition (EMT) process. The present study provides a cell atlas of the epididymis of a patient with 46,XY DSD and serves as an important resource for understanding the pathophysiology of DSD.


Asunto(s)
Trastorno del Desarrollo Sexual 46,XY , Trastornos del Desarrollo Sexual , Masculino , Humanos , Epidídimo , Trastorno del Desarrollo Sexual 46,XY/genética , Mutación , Mutación Missense , Factor Esteroidogénico 1/genética
2.
Cell Rep Med ; 3(12): 100825, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36513070

RESUMEN

Sperm chemotaxis is required for guiding sperm toward the egg. However, the molecular identity of physiological chemoattractant and its involvement in infertility remain elusive. Here, we identify DEFB19/119 (mouse/human orthologs) as a physiological sperm chemoattractant. The epithelia of the female reproductive tract and the cumulus-oocyte complex secrete DEFB19/119 that elicits calcium mobilization via the CatSper channel and induces sperm chemotaxis in capacitated sperm. Manipulating the level of DEFB19 in mice determines the number of sperm arriving at the fertilization site. Importantly, we identify exon mutations in the DEFB119 gene in idiopathic infertile women with low level of DEFB119 in the follicular fluid. The level of DEFB119 correlates with the chemotactic potency of follicular fluid and predicts the infertile outcome with positive correlation. This study reveals the pivotal role of DEFB19/119 in sperm chemotaxis and demonstrates its potential application in the diagnosis of idiopathic infertility.


Asunto(s)
Infertilidad Femenina , beta-Defensinas , Humanos , Masculino , Femenino , Animales , Ratones , Quimiotaxis/fisiología , Semen/metabolismo , Espermatozoides/metabolismo , Factores Quimiotácticos/metabolismo
3.
Cell Biosci ; 12(1): 188, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36414976

RESUMEN

ß-defensins are small antimicrobial peptides that play essential roles in male fertility. Although several members of the ß-defensin family are preferentially expressed in the testis, their involvement in spermatogenesis remains elusive. In this study, we have characterized the expression and function of Defb19 in mouse testis. Our results showed that Defb19 is expressed in both Sertoli cells and germ cells. Overexpression of Defb19 in the 15P-1 Sertoli cell line decreases the expression of cell junction molecules and promotes the matrix adhesion and migration of Sertoli cells. Recombinant DEFB19 and conditioned medium of Defb19-overexpressed 15P-1 cells promote the migration of GC2-spd spermatocyte cell line. Knockout of Defb19 in mouse by CRISPR/Cas9 resulted in male subfertility with testicular and epididymal atrophy. A marked increase in apoptosis and a significant decrease in the sperm count were observed in the KO mice. Together, our study has uncovered an important role of Defb19 in male fertility by regulating the migration of both the Sertoli cells and the germ cells. Our study has shed new light on the functions of ß-defensins in the testis.

5.
Cell Prolif ; 55(5): e13226, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35403306

RESUMEN

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. However, the treatment regimens for TNBC are limited. Chromosome segregation 1-like (CSE1L), also called cellular apoptosis susceptibility protein (CAS), is highly expressed in breast cancer and plays a crucial role in the progression of various tumours. However, the involvement of CAS in TNBC remains elusive. In this study, we showed that the expression of CAS was higher in TNBC samples than in non-TNBC samples in the Gene Expression Omnibus database. Knockdown of CAS inhibited MDA-MB-231 cell growth, migration and invasion. Further RNA-seq analysis revealed that complement pathway activity was significantly elevated. Of note, complement component 3 (C3), the key molecule in the complement pathway, was significantly upregulated, and the expression of C3 was negatively correlated with that of CAS in breast cancer. Lower C3 expression was related to poor prognosis. Interestingly, the expression level of C3 was positively correlated with the infiltration of multiple immune cells. Taken together, our findings suggest that CAS participates in the development of TNBC through C3-mediated immune cell suppression and might constitute a potential therapeutic target for TNBC.


Asunto(s)
Complemento C3/metabolismo , Neoplasias de la Mama Triple Negativas , Mama/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Proteína de Susceptibilidad a Apoptosis Celular/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias de la Mama Triple Negativas/patología
6.
Reprod Sci ; 29(10): 2842-2846, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-34845669

RESUMEN

The COVID-19 pandemic has been continuing for one and a half year and caused a profound effect on human health. Although advanced researches and literatures are gathered, the influences of SARS-CoV-2 on the reproduction systems are largely unknown, especially on the female reproductive functions. The purpose of this study was to investigate the effect of N501Y mutant spike protein of SARS-Cov-2 on oocyte maturation. We demonstrated that the N501Y mutant of SARS-CoV-2 spike protein impaired the mouse oocyte maturation accompanied by abnormal spindle assembly. Furthermore, the mean spindle length and the plate width were significantly increased in the N501Y-treated group compared to the control group. These results indicated the potential impairment of maturation of the oocytes caused by the infection of SARS-CoV-2, albeit current results were derived from mouse oocytes. The present study provided a theoretical basis for the attention of female reproductive health during the COVID-19 pandemic and shed light on the potential risk of SARS-CoV-2 in the successful rate of assisted reproduction.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Animales , Femenino , Humanos , Ratones , Mutación , Oocitos , Pandemias , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética
7.
Mol Ther Nucleic Acids ; 26: 1374-1386, 2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34900396

RESUMEN

Patients with asthenozoospermia often present multiple defects in sperm functions apart from a decrease in sperm motility. However, the etiological factors underlying these multifaceted defects remain mostly unexplored, which may lead to unnecessary treatment and unsatisfactory assisted reproductive technologies (ART) outcome. Here, we show that the protein levels of CD147 were lowered in sperm obtained from asthenozoospermic infertile patients exhibiting defects in both sperm motility and the acrosome reaction. Whereas CD147 maintained sperm motility before capacitation, female tract-derived soluble CD147 interacted with sperm-bound CD147 to induce an acrosome reaction in capacitated sperm. Soluble CD147 treatment restored the acrosome reaction and improved the fertility of sperm from patients with asthenozoospermia. Mechanistically, CD147 promotes sperm motility and acrosome reaction (AR) by eliciting Ca2+ influx through soluble CD147 binding to sperm-bound CD147. Notably, the level of soluble CD147 in seminal plasma was positively correlated with the fertilization rate and pregnancy outcome in infertile couples undergoing in vitro fertilization. Our study has identified a marker for the diagnosis and a therapeutic target for the defective AR capability in asthenozoospermia and a candidate for the prediction of in vitro fertilization outcomes for male infertile patients that facilitates the development of precision medicine in ART.

8.
Cell Discov ; 7(1): 34, 2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-34001862

RESUMEN

Spermatozoa acquire their fertilizing ability and forward motility during epididymal transit, suggesting the importance of the epididymis. Although the cell atlas of the epididymis was reported recently, the heterogeneity of the cells and the gene expression profile in the epididymal tube are still largely unknown. Considering single-cell RNA sequencing results, we thoroughly studied the cell composition, spatio-temporal differences in differentially expressed genes (DEGs) in epididymal segments and mitochondria throughout the epididymis with sufficient cell numbers. In total, 40,623 cells were detected and further clustered into 8 identified cell populations. Focused analyses revealed the subpopulations of principal cells, basal cells, clear/narrow cells, and halo/T cells. Notably, two subtypes of principal cells, the Prc7 and Prc8 subpopulations were enriched as stereocilia-like cells according to GO analysis. Further analysis demonstrated the spatially specific pattern of the DEGs in each cell cluster. Unexpectedly, the abundance of mitochondria and mitochondrial transcription (MT) was found to be higher in the corpus and cauda epididymis than in the caput epididymis by scRNA-seq, immunostaining, and qPCR validation. In addition, the spatio-temporal profile of the DEGs from the P42 and P56 epididymis, including transiting spermatozoa, was depicted. Overall, our study presented the single-cell transcriptome atlas of the mouse epididymis and revealed the novel distribution pattern of mitochondria and key genes that may be linked to sperm functionalities in the first wave and subsequent wave of sperm, providing a roadmap to be emulated in efforts to achieve sperm maturation regulation in the epididymis.

9.
Biochim Biophys Acta Mol Cell Res ; 1867(7): 118708, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32240712

RESUMEN

Spermatogonia migrate to the microenvironment during the establishment from gonocytes and leave it when they differentiate. However, the mechanisms underlying the regulation of spermatogonial differentiation-associated migration remain mostly unknown. In this study, we show that spermatogonial differentiation induced by retinoic acid (RA) was accompanied with increased migration ability and elevated expression of connective tissue growth factor (CTGF), a member of the CCN family. CTGF was mainly expressed in the testicular somatic cells and committed spermatogonial progenitors. Recombinant CTGF (rCTGF) promoted the spermatogonial migration and silencing of endogenous CTGF suppressed the migration of homogenous spermatogonial cell lines. Moreover, depletion of CTGF by neutralizing antibody inhibited the elevated migration ability induced by RA, suggesting both the paracrine and autocrine roles of CTGF in spermatogonial migration associated with differentiation. Finally, CTGF interacted with ß1-integrin and regulated its level in spermatogonial cell lines. Together, our study provides novel insights into the regulation of spermatogonial migration by CTGF, which may shed light on the diagnosis and treatment of male infertility.


Asunto(s)
Movimiento Celular/genética , Factor de Crecimiento del Tejido Conjuntivo/genética , Integrina beta1/genética , Espermatogonias/crecimiento & desarrollo , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular , Humanos , Infertilidad Masculina/diagnóstico , Infertilidad Masculina/genética , Infertilidad Masculina/patología , Masculino , Ratones , Espermatogonias/metabolismo , Tretinoina/farmacología
10.
J Clin Med ; 8(7)2019 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-31336927

RESUMEN

Human cardiac progenitor cells isolated from the same host may have advantages over other sources of stem cells. The aim of this study is to establish a new source of human progenitor cells collected from a waste product, pericardiac effusion fluid, after open-heart surgery in children with congenital heart diseases. The fluid was collected every 24 h for 2 days after surgery in 37 children. Mononuclear cells were isolated and expanded in vitro. These pericardial effusion-derived progenitor cells (PEPCs) exhibiting cardiogenic lineage markers, were highly proliferative and enhanced angiogenesis in vitro. Three weeks after stem cell transplantation into the ischemic heart in mice, cardiac ejection fraction was improved significantly without detectable progenitor cells. Gene expression profiles of the repaired hearts revealed activation of several known repair mechanisms including paracrine effects, cell migration, and angiogenesis. These progenitor cells may have the potential for heart regeneration.

11.
Proc Natl Acad Sci U S A ; 116(23): 11259-11264, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31110004

RESUMEN

Hydrogels that are self-assembled by peptides have attracted great interest for biomedical applications. However, the link between chemical structures of peptides and their corresponding hydrogel properties is still unclear. Here, we showed a combinational approach to generate a structurally diverse hydrogel library with more than 2,000 peptides and evaluated their corresponding properties. We used a quantitative structure-property relationship to calculate their chemical features reflecting the topological and physicochemical properties, and applied machine learning to predict the self-assembly behavior. We observed that the stiffness of hydrogels is correlated with the diameter and cross-linking degree of the nanofiber. Importantly, we demonstrated that the hydrogels support cell proliferation in culture, suggesting the biocompatibility of the hydrogel. The combinatorial hydrogel library and the machine learning approach we developed linked the chemical structures with their self-assembly behavior and can accelerate the design of novel peptide structures for biomedical use.


Asunto(s)
Dipéptidos/química , Hidrogeles/química , Materiales Biocompatibles/química , Proliferación Celular/efectos de los fármacos , Humanos , Aprendizaje Automático , Nanofibras/química
12.
Biochim Biophys Acta Mol Cell Res ; 1865(4): 605-615, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29326073

RESUMEN

Retinoic acid (RA) plays a pivotal role in many cellular processes; however, the signaling mechanisms mediating the effect of RA are not fully understood. Here, we show that RA transcriptionally upregulates cystic fibrosis transmembrane conductance regulator (Cftr) by promoting the direct binding of its receptor RARα to Cftr promoter in mouse spermatogonia and embryonic stem (ES) cells. The RA/CFTR pathway is involved in the differentiation of spermatogonia and organogenesis during the embryo development of Xenopus laevis. Loss of CFTR by siRNA-mediated knockdown blunts the RA-induced spermatogonial differentiation. Overexpression of CFTR mimics the effect of RA on the induction of spermatogonial differentiation or restores the developmental defects induced by the knockdown of RARα in spermatogonial cells and Xenopus laevis. Analysis of the human database shows that the expression of CFTR positively correlates with RARα in brain tissues, stem cells as well as cancers, supporting the role of RA/CFTR pathway in various developmental processes in humans. Together, our study discovers an essential role of CFTR in mediating the RA-dependent signaling for stem cell differentiation and embryonic development.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Desarrollo Embrionario/efectos de los fármacos , Células Madre/citología , Células Madre/metabolismo , Transcripción Genética/efectos de los fármacos , Tretinoina/farmacología , Xenopus laevis/embriología , Animales , Secuencia de Bases , Línea Celular , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/efectos de los fármacos , Humanos , Masculino , Ratones Endogámicos C57BL , Receptor alfa de Ácido Retinoico/metabolismo , Transducción de Señal/efectos de los fármacos , Espermatogonias/citología , Células Madre/efectos de los fármacos , Xenopus laevis/metabolismo , beta Catenina/metabolismo
13.
Sci Rep ; 7(1): 17759, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29259204

RESUMEN

Spermatogenesis consists of a series of highly regulated processes that include mitotic proliferation, meiosis and cellular remodeling. Although alterations in gene expression are well known to modulate spermatogenesis, posttranscriptional mechanisms are less well defined. The ubiquitin proteasome system plays a significant role in protein turnover and may be involved in these posttranscriptional mechanisms. We previously identified ubiquitin ligase Huwe1 in the testis and showed that it can ubiquitinate histones. Since modulation of histones is important at many steps in spermatogenesis, we performed a complete characterization of the functions of Huwe1 in this process by examining the effects of its inactivation in the differentiating spermatogonia, spermatocytes and spermatids. Inactivation of Huwe1 in differentiating spermatogonia led to their depletion and formation of fewer pre-leptotene spermatocytes. The cell degeneration was associated with an accumulation of DNA damage response protein γH2AX, impaired downstream signalling and apoptosis. Inactivation of Huwe1 in spermatocytes indicated that Huwe1 is not essential for meiosis and spermiogenesis, but can result in accumulation of γH2AX. Collectively, these results provide a comprehensive survey of the functions of Huwe1 in spermatogenesis and reveal Huwe1's critical role as a modulator of the DNA damage response pathway in the earliest steps of spermatogonial differentiation.


Asunto(s)
Diferenciación Celular/fisiología , Ligasas/metabolismo , Meiosis/fisiología , Espermatogénesis/fisiología , Espermatogonias/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Animales , Femenino , Histonas/metabolismo , Masculino , Ratones , Ratones Noqueados , Complejo de la Endopetidasa Proteasomal/metabolismo , Espermátides/metabolismo , Espermatocitos/metabolismo , Espermatogonias/fisiología , Testículo/metabolismo , Testículo/fisiología
14.
Oncotarget ; 8(53): 91445-91458, 2017 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-29207656

RESUMEN

CatSper channel has been considered the principal sperm Ca2+ channel responsible for the cytosolic Ca2+ elevation required for various sperm functions necessary for fertilization [1-4]. However, the mechanism underlying the activation of CatSper channel by various physiological ligands remain incompletely understood. We have recently demonstrated the expression of C-C chemokine receptor 6 (CCR6) in sperm and Ca2+ influx upon binding of human ß-defensin 1 (DEFB1) to CCR6, which is important for sperm motility [5]. In the present study, we have demonstrated that CCR6 receptor and CatSper channel are both required for the Ca2+ entry/current induced by physiological ligands DEFB1, chemokine (C-C motif) ligand 20 (CCL20) and progesterone in human sperm. CCR6 is co-localized and interacts with CatSper in human sperm. Ca2+ influx mediated by CCR6 and CatSper is required for essential sperm functions, including motility, hyperactivation and acrosome reaction, which are impaired in infertile sperm showing reduced levels of CCR6 and CatSper. The present finding suggests a critical role of CCR6 receptor in mediating ligand-induced, CatSper-dependent Ca2+ influx required for various sperm functions and thus male fertility.

15.
Endocrinology ; 158(11): 4000-4016, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28938460

RESUMEN

Spermatogenesis is sustained by a heterogeneous population of spermatogonia that includes the spermatogonial stem cells. However, the mechanisms underlying their establishment from gonocyte embryonic precursors and their maintenance thereafter remain largely unknown. In this study, we report that inactivation of the ubiquitin ligase Huwe1 in male germ cells in mice led to the degeneration of spermatogonia in neonates and resulted in a Sertoli cell-only phenotype in the adult. Huwe1 knockout gonocytes showed a decrease in mitotic re-entry, which inhibited their transition to spermatogonia. Inactivation of Huwe1 in primary spermatogonial culture or the C18-4 cell line resulted in cell degeneration. Degeneration of Huwe1 knockout spermatogonia was associated with an increased level of histone H2AX and an elevated DNA damage response that led to apparent mitotic catastrophe but not apoptosis or senescence. Blocking this increase in H2AX prevented the degeneration of Huwe1-depleted cells. Taken together, these results reveal a previously undefined role of Huwe1 in orchestrating the physiological DNA damage response in the male germline that contributes to the establishment and maintenance of spermatogonia.


Asunto(s)
Diferenciación Celular/genética , Daño del ADN/genética , Espermatogénesis/genética , Espermatogonias/fisiología , Ubiquitina-Proteína Ligasas/fisiología , Animales , Células Cultivadas , Regulación hacia Abajo/genética , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Ratones Noqueados , Proteínas Supresoras de Tumor
16.
Oncotarget ; 8(2): 3132-3143, 2017 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-27902973

RESUMEN

CD147 null mutant male mice are infertile with arrested spermatogenesis and increased apoptotic germ cells. Our previous studies have shown that CD147 prevents apoptosis in mouse spermatocytes but not spermatogonia. However, the underlying mechanism remains elusive. In the present study, we aim to determine the CD147-regulated apoptotic pathway in mouse spermatocytes. Our results showed that immunodepletion of CD147 triggered apoptosis through extrinsic apoptotic pathway in mouse testis and spermatocyte cell line (GC-2 cells), accompanied by activation of non-canonical NFκB signaling and suppression of canonical NFκB signaling. Furthermore, CD147 was found to interact with TRAF2, a factor known to regulate NFκB and extrinsic apoptotic signaling, and interfering CD147 led to the decrease of TRAF2. Consistently, depletion of CD147 by CRISPR/Cas9 technique in GC-2 cells down-regulated TRAF2 and resulted in cell death with suppressed canonical NFκB and activated non-canonical NFκB signaling. On the contrary, interfering of CD147 had no effect on NFκB signaling pathways as well as TRAF2 protein level in mouse spermatogonia cell line (GC-1 cells). Taken together, these results suggested that CD147 plays a key role in reducing extrinsic apoptosis in spermatocytes, but not spermatogonia, through modulating NFκB signaling pathway.


Asunto(s)
Apoptosis , Basigina/metabolismo , FN-kappa B/metabolismo , Transducción de Señal , Espermatocitos/metabolismo , Animales , Basigina/antagonistas & inhibidores , Basigina/genética , Línea Celular , Supervivencia Celular/genética , Técnicas de Inactivación de Genes , Marcación de Gen , Masculino , Ratones , Factor 2 Asociado a Receptor de TNF/metabolismo
17.
Sci Rep ; 6: 28402, 2016 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-27346053

RESUMEN

Bicarbonate (HCO3(-)) is essential for preimplantation embryo development. However, the mechanism underlying the HCO3(-) transport into the embryo remains elusive. In the present study, we examined the possible involvement of Cl(-)/HCO3(-) exchanger in mediating HCO3(-) transport into the embryo. Our results showed that depletion of extracellular Cl(-), even in the presence of HCO3(-), suppressed embryo cleavage in a concentration-dependent manner. Cleavage-associated HCO3(-)-dependent events, including increase of intracellular pH, upregulation of miR-125b and downregulation of p53, also required Cl(-). We further showed that Cl(-)/HCO3(-) exchanger solute carrier family 26 (SLC26) A3 and A6 were expressed at 2-cell through blastocyst stage. Blocking individual exchanger's activity by inhibitors or gene knockdown differentially decreased embryo cleavage and inhibited HCO3(-)-dependent events, while inhibiting/knocking down both produced an additive effect to an extent similar to that observed when CFTR was inhibited. These results indicate the involvement of SLC26A3 and A6 in transporting HCO3(-) essential for embryo cleavage, possibly working in concert with CFTR through a Cl(-) recycling pathway. The present study sheds light into our understanding of molecular mechanisms regulating embryo cleavage by the female reproductive tract.


Asunto(s)
Bicarbonatos/metabolismo , Blastocisto/metabolismo , Antiportadores de Cloruro-Bicarbonato/metabolismo , Cloruros/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Animales , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Femenino , Humanos , Concentración de Iones de Hidrógeno , Ratones , MicroARNs/genética , Embarazo , Transportadores de Sulfato , Proteína p53 Supresora de Tumor/genética
18.
Sci Transl Med ; 6(249): 249ra108, 2014 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-25122636

RESUMEN

Genital tract infection and reduced sperm motility are considered two pivotal etiological factors for male infertility associated with leukocytospermia and asthenozoospermia, respectively. We demonstrate that the amount of human ß-defensin 1 (DEFB1) in sperm from infertile men exhibiting either leukocytospermia or asthenozoospermia, both of which are associated with reduced motility and reduced bactericidal activity in sperm, is much lower compared to that in normal fertile sperm. Interference with DEFB1 function also decreases both motility and bactericidal activity in normal sperm, whereas treatment with recombinant DEFB1 markedly restores DEFB1 expression, bactericidal activity, sperm quality, and egg-penetrating ability in sperm from both asthenozoospermia and leukocytospermia patients. DEFB1 interacts with chemokine receptor type 6 (CCR6) in sperm and triggers Ca(2+) mobilization, which is important for sperm motility. Interference with CCR6 function also reduces motility and bactericidal activity of normal sperm. The present finding explains a common defect in male infertility associated with both asthenozoospermia and leukocytospermia, indicating a dual role of DEFB1 in defending male fertility. These results also suggest that the expression of DEFB1 and CCR6 may have diagnostic potential and that treatment of defective sperm with recombinant DEFB1 protein may be a feasible therapeutic approach for male infertility associated with poor sperm motility and genital tract infection.


Asunto(s)
Infertilidad Masculina/metabolismo , Infertilidad Masculina/patología , Infecciones del Sistema Genital/metabolismo , Infecciones del Sistema Genital/patología , Motilidad Espermática , beta-Defensinas/deficiencia , Señalización del Calcio , Humanos , Masculino , Modelos Biológicos , Unión Proteica , Receptores CCR6/metabolismo , Proteínas Recombinantes/farmacología , Espermatozoides/metabolismo , beta-Defensinas/metabolismo
19.
Nat Commun ; 5: 4420, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25025956

RESUMEN

The cause of insulin insufficiency remains unknown in many diabetic cases. Up to 50% adult patients with cystic fibrosis (CF), a disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR), develop CF-related diabetes (CFRD) with most patients exhibiting insulin insufficiency. Here we show that CFTR is a regulator of glucose-dependent electrical acitivities and insulin secretion in ß-cells. We demonstrate that glucose elicited whole-cell currents, membrane depolarization, electrical bursts or action potentials, Ca(2+) oscillations and insulin secretion are abolished or reduced by inhibitors or knockdown of CFTR in primary mouse ß-cells or RINm5F ß-cell line, or significantly attenuated in CFTR mutant (DF508) mice compared with wild-type mice. VX-809, a newly discovered corrector of DF508 mutation, successfully rescues the defects in DF508 ß-cells. Our results reveal a role of CFTR in glucose-induced electrical activities and insulin secretion in ß-cells, shed light on the pathogenesis of CFRD and possibly other idiopathic diabetes, and present a potential treatment strategy.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Glucosa/farmacología , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Animales , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Ensayo de Inmunoadsorción Enzimática , Secreción de Insulina , Células Secretoras de Insulina/efectos de los fármacos , Masculino , Potenciales de la Membrana/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Técnicas de Placa-Clamp
20.
Semin Cell Dev Biol ; 29: 31-42, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24594193

RESUMEN

Spermatogenesis is a multistep process that supports the production of millions of sperm daily. Understanding of the molecular mechanisms that regulate spermatogenesis has been a major focus for decades. Yet, the regulators involved in different cellular processes of spermatogenesis remain largely unknown. Human diseases that result in defective spermatogenesis have provided hints on the molecular mechanisms regulating this process. In this review, we have summarized recent findings on the function and signaling mechanisms of several genes that are known to be associated with disease or pathological processes, including CFTR, CD147, YWK-II and CT genes, and discuss their potential roles in regulating different processes of spermatogenesis.


Asunto(s)
Células de Sertoli/fisiología , Espermatogénesis/fisiología , Espermatozoides/citología , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Basigina/genética , Basigina/metabolismo , Movimiento Celular/genética , Criptorquidismo/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Humanos , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Células de Sertoli/citología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...