Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Haematologica ; 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38572553

RESUMEN

Resistance to glucocorticoids (GCs), the common agents for remission induction in pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL), poses a significant therapeutic hurdle. Therefore, dissecting the mechanisms shaping GC resistance could lead to new treatment modalities. Here, we showed that CD9- BCP-ALL cells were preferentially resistant to prednisone and dexamethasone over other standard cytotoxic agents. Concordantly, we identified significantly more poor responders to the prednisone prephase among BCP-ALL patients with a CD9- phenotype, especially for those with adverse presenting features including older age, higher white cell count and BCR-ABL1. Furthermore, gain- and loss-of-function experiments dictated a definitive functional linkage between CD9 expression and GC susceptibility, as demonstrated by the reversal and acquisition of relative GC resistance in CD9low and CD9high BCP-ALL cells, respectively. Despite physical binding to the GC receptor NR3C1, CD9 did not alter its expression, phosphorylation or nuclear translocation but potentiated the induction of GC-responsive genes in GCresistant cells. Importantly, the MEK inhibitor trametinib exhibited higher synergy with GCs against CD9- than CD9+ lymphoblasts to reverse drug resistance in vitro and in vivo. Collectively, our results elucidate a previously unrecognized regulatory function of CD9 in GC sensitivity, and inform new strategies for management of children with resistant BCP-ALL.

2.
Blood Adv ; 5(21): 4380-4392, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34500454

RESUMEN

Homing and engraftment of hematopoietic stem/progenitor cells (HSPCs) into the bone marrow (BM) microenvironment are tightly regulated by the chemokine stromal cell-derived factor-1 (SDF-1) and its G-protein-coupled receptor C-X-C motif chemokine receptor 4 (CXCR4), which on engagement with G-protein subunits, trigger downstream migratory signals. Regulators of G-protein signaling (RGS) are GTPase-accelerating protein of the Gα subunit and R4 subfamily members have been implicated in SDF-1-directed trafficking of mature hematopoietic cells, yet their expression and influence on HSPCs remain mostly unknown. Here, we demonstrated that human CD34+ cells expressed multiple R4 RGS genes, of which RGS1, RGS2, RGS13, and RGS16 were significantly upregulated by SDF-1 in a CXCR4-dependent fashion. Forced overexpression of RGS1, RGS13, or RGS16 in CD34+ cells not only inhibited SDF-1-directed migration, calcium mobilization, and phosphorylation of AKT, ERK, and STAT3 in vitro, but also markedly reduced BM engraftment in transplanted NOD/SCID mice. Genome-wide microarray analysis of RGS-overexpressing CD34+ cells detected downregulation of multiple effectors with established roles in stem cell trafficking/maintenance. Convincingly, gain-of-function of selected effectors or ex vivo priming with their ligands significantly enhanced HSPC engraftment. We also constructed an evidence-based network illustrating the overlapping mechanisms of RGS1, RGS13, and RGS16 downstream of SDF-1/CXCR4 and Gαi. This model shows that these RGS members mediate compromised kinase signaling and negative regulation of stem cell functions, complement activation, proteolysis, and cell migration. Collectively, this study uncovers an essential inhibitory role of specific R4 RGS proteins in stem cell engraftment, which could potentially be exploited to develop improved clinical HSPC transplantation protocols.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Proteínas RGS , Animales , Antígenos CD34 , Células Madre Hematopoyéticas , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Proteínas RGS/genética , Receptores CXCR4/genética
3.
J Pharm Sci ; 107(11): 2755-2763, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30005986

RESUMEN

Treating thrombocytopenia induced by chemotherapy remains an unmet-medical need. The use of recombinant human interleukin-11 (rhIL-11) requires repeated injections and induces significant fluid retention in some patients. Modification of human interleukin-11 with chemically inert polyethylene glycol polymer (PEG) may extend the peripheral circulation half-life leading to an improved pharmacokinetic and pharmadynamic profile. In this study, a number of rhIL-11 PEG conjugates were created to determine the optimal approach to prolong circulating half-life with the most robust pharmacological effect. The lead candidate was found to be a single 40-kDa Y-shaped PEG linked to the N-terminus, which produced a long-lasting circulating half-life, enhanced efficacy and alleviated side effect of dilutional anemia in healthy rat models. This candidate was also shown to be effective in myelosuppressive rats in preventing the occurrence of severe thrombocytopenia while ameliorating dilutional anemia, compared to rats receiving daily administration of unmodified rhIL-11 at the same dose. These data indicated that a single injection of the selected modified rhIL-11 for each cycle of chemotherapy regimen is potentially feasible. This approach may also be useful in treating patients of acute radiation syndrome when frequent administration is not feasible in a widespread event of a major radiation exposure.


Asunto(s)
Interleucina-11/farmacología , Interleucina-11/farmacocinética , Polietilenglicoles/farmacología , Polietilenglicoles/farmacocinética , Animales , Plaquetas/efectos de los fármacos , Humanos , Interleucina-11/química , Masculino , Modelos Moleculares , Recuento de Plaquetas , Polietilenglicoles/química , Ratas Sprague-Dawley , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacocinética , Proteínas Recombinantes/farmacología , Trombocitopenia/tratamiento farmacológico , Trombopoyesis/efectos de los fármacos
4.
Toxicol Appl Pharmacol ; 342: 39-49, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29407773

RESUMEN

The mono-PEGylated recombinant human interleukin-11 (rhIL-11) was evaluated for its pharmacology and toxicology profile in non-human primates. This PEGylated IL-11 (PEG-IL11) showed a much prolonged circulating half-life of 67h in cynomolgus monkeys as compared to its un-PEGylated counterpart (~3h) through subcutaneous administration, implicating that a single injection of the recommended dose will effectively enhance thrombopoiesis in humans for a much longer period of time compared to rhIL-11 in humans (t1/2=6.9h). The toxicokinetics study of single dose and multiple doses showed that systemic exposure was positively correlated with the dosing level, implying that efficacy and toxicity were mechanism-based. A single high dose at 6.25mg/kg through subcutaneous route revealed tolerable and transient toxicity. Multiple-dose in monkeys receiving 0.3mg/kg weekly of the drug developed only mild to moderate toxicity. Major adverse events and immunogenicity in monkeys were only observed in the overdose groups. Bones were positively impacted; while reversible toxicities in heart, liver, kidney and lung observed were likely to be consequences of fluid retention. In summary, the PEG moiety on rhIL-11 did not elicit additional toxicities, and the drug under investigation was found to be well tolerated in monkeys after receiving a single effective dose of 0.1-0.3mg/kg through subcutaneous delivery, which may be allometrically scaled to a future clinical dose at 30-100µg/kg, creating a potential long acting, safer, and more convenient treatment approach based on rhIL-11.


Asunto(s)
Interleucina-11/administración & dosificación , Polietilenglicoles/administración & dosificación , Animales , Densidad Ósea/efectos de los fármacos , Densidad Ósea/fisiología , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos/métodos , Femenino , Humanos , Inyecciones Subcutáneas , Interleucina-11/química , Interleucina-11/toxicidad , Hígado/efectos de los fármacos , Hígado/metabolismo , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Macaca fascicularis , Masculino , Polietilenglicoles/química , Polietilenglicoles/toxicidad , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/química , Proteínas Recombinantes/toxicidad
5.
Protein Expr Purif ; 146: 69-77, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29408294

RESUMEN

Current source of recombinant human interleukin-11 (rhIL-11) is isolated from a fusion protein expressed by E. coli that requires additional enterokinase to remove linked protein, resulting in product heterogeneity of N-terminal sequence. Due to lack of glycosylation, rhIL-11 is suitable to be expressed by yeast cells. However, the only available yeast-derived rhIL-11 presents an obstacle in low production yield, as well as an unamiable process, such as the use of reverse-phase chromatography employing plenty of toxic organic solvents. Our findings showed that the low yield was due to self-aggregation of rhIL-11. A novel process recovering bioactive rhIL-11 from the yeast secretory medium therefore has been developed and demonstrated, involving fermentation from Pichia pastoris, followed by a two-phase extraction to precipitate rhIL-11. After renaturing, the protein of interest was purified by a two-column step, comprising a cation-exchanger, and a hydrophobic interaction chromatography in tandem at high sample loads that was facile and cost-effective in future scale-up. Identity and quality assessments confirmed the expected amino acid sequence without N-terminal heterogeneity, as well as high quality in potency and purity. Such a process provides an alternative and adequate supply of the starting material for the PEGylated rhIL-11.


Asunto(s)
Interleucina-11/genética , Pichia/genética , Línea Celular , Proliferación Celular , Cromatografía en Gel , Clonación Molecular/métodos , Fermentación , Expresión Génica , Humanos , Interleucina-11/química , Interleucina-11/aislamiento & purificación , Interleucina-11/metabolismo , Pichia/metabolismo , Agregado de Proteínas , Replegamiento Proteico , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Solubilidad
6.
Sci Rep ; 6: 18941, 2016 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-26732368

RESUMEN

Influenza A virus (IAV) poses global threats to human health. Acute respiratory distress syndrome and multi-organ dysfunction are major complications in patients with severe influenza infection. This may be explained by the recent studies which highlighted the role of the pulmonary endothelium as the center of innate immune cells recruitment and excessive pro-inflammatory cytokines production. In this report, we examined the potential immunomodulatory effects of two indirubin derivatives, indirubin-3'-(2,3-dihydroxypropyl)-oximether (E804) and indirubin-3'-oxime (E231), on IAV (H9N2) infected-human pulmonary microvascular endothelial cells (HPMECs). Infection of H9N2 on HPMECs induced a high level of chemokines and cytokines production including IP-10, RANTES, IL-6, IFN-ß and IFN-γ1. Post-treatment of E804 or E231 could significantly suppress the production of these cytokines. H9N2 infection rapidly triggered the activation of innate immunity through phosphorylation of signaling molecules including mitogen-activated protein kinases (MAPKs) and signal transducer and activator of transcription (STAT) proteins. Using specific inhibitors or small-interfering RNA, we confirmed that indirubin derivatives can suppress H9N2-induced cytokines production through MAPKs and STAT3 signaling pathways. These results underscore the immunomodulatory effects of indirubin derivatives on pulmonary endothelium and its therapeutic potential on IAV-infection.


Asunto(s)
Antiinflamatorios/farmacología , Células Endoteliales/virología , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/fisiología , Transporte Activo de Núcleo Celular , Supervivencia Celular/efectos de los fármacos , Citocinas/genética , Citocinas/metabolismo , Células Endoteliales/metabolismo , Expresión Génica , Humanos , Indoles/farmacología , Subtipo H9N2 del Virus de la Influenza A/efectos de los fármacos , Subtipo H9N2 del Virus de la Influenza A/fisiología , Interferón beta/genética , Interferón beta/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Pulmón , Microvasos/citología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...