Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 66(20): 14133-14149, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37782247

RESUMEN

Methyl-lysine reader p53 binding protein 1 (53BP1) is a central mediator of DNA break repair and is associated with various human diseases, including cancer. Thus, high-quality 53BP1 chemical probes can aid in further understanding the role of 53BP1 in genome repair pathways. Herein, we utilized focused DNA-encoded library screening to identify the novel hit compound UNC8531, which binds the 53BP1 tandem Tudor domain (TTD) with an IC50 of 0.47 ± 0.09 µM in a TR-FRET assay and Kd values of 0.85 ± 0.17 and 0.79 ± 0.52 µM in ITC and SPR, respectively. UNC8531 was cocrystallized with the 53BP1 TTD to guide further optimization efforts, leading to UNC9512. NanoBRET and 53BP1-dependent foci formation experiments confirmed cellular target engagement. These results show that UNC9512 is a best-in-class small molecule 53BP1 antagonist that can aid further studies investigating the role of 53BP1 in DNA repair, gene editing, and oncogenesis.


Asunto(s)
Reparación del ADN , Péptidos y Proteínas de Señalización Intracelular , Humanos , ADN , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/química , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Dominio Tudor
3.
ACS Chem Biol ; 18(3): 494-507, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36877831

RESUMEN

Bivalent chemical degraders, otherwise known as proteolysis-targeting chimeras (PROTACs), have proven to be an efficient strategy for targeting overexpressed or mutated proteins in cancer. PROTACs provide an alternative approach to small-molecule inhibitors, which are restricted by occupancy-driven pharmacology, often resulting in acquired inhibitor resistance via compensatory increases in protein expression. Despite the advantages of bivalent chemical degraders, they often have suboptimal physicochemical properties and optimization for efficient degradation remains highly unpredictable. Herein, we report the development of a potent EED-targeted PRC2 degrader, UNC7700. UNC7700 contains a unique cis-cyclobutane linker and potently degrades PRC2 components EED (DC50 = 111 nM; Dmax = 84%), EZH2WT/EZH2Y641N (DC50 = 275 nM; Dmax = 86%), and to a lesser extent SUZ12 (Dmax = 44%) after 24 h in a diffuse large B-cell lymphoma DB cell line. Characterization of UNC7700 and related compounds for ternary complex formation and cellular permeability to provide a rationale for the observed improvement in degradation efficiency remained challenging. Importantly, UNC7700 dramatically reduces H3K27me3 levels and is anti-proliferative in DB cells (EC50 = 0.79 ± 0.53 µM).


Asunto(s)
Neoplasias , Complejo Represivo Polycomb 2 , Humanos , Complejo Represivo Polycomb 2/metabolismo , Procesamiento Proteico-Postraduccional , Proteolisis
4.
Nat Chem Biol ; 19(5): 624-632, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36797403

RESUMEN

The nucleosome acidic patch is a major interaction hub for chromatin, providing a platform for enzymes to dock and orient for nucleosome-targeted activities. To define the molecular basis of acidic patch recognition proteome wide, we performed an amino acid resolution acidic patch interactome screen. We discovered that the histone H3 lysine 36 (H3K36) demethylase KDM2A, but not its closely related paralog, KDM2B, requires the acidic patch for nucleosome binding. Despite fundamental roles in transcriptional repression in health and disease, the molecular mechanisms governing nucleosome substrate specificity of KDM2A/B, or any related JumonjiC (JmjC) domain lysine demethylase, remain unclear. We used a covalent conjugate between H3K36 and a demethylase inhibitor to solve cryogenic electron microscopy structures of KDM2A and KDM2B trapped in action on a nucleosome substrate. Our structures show that KDM2-nucleosome binding is paralog specific and facilitated by dynamic nucleosomal DNA unwrapping and histone charge shielding that mobilize the H3K36 sequence for demethylation.


Asunto(s)
Lisina , Nucleosomas , Histonas/metabolismo , Cromatina , Histona Demetilasas con Dominio de Jumonji/química
5.
SLAS Discov ; 27(8): 428-439, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36272689

RESUMEN

Methyl-lysine (Kme) reader domains are prevalent in chromatin regulatory proteins which bind post-translational modification sites to recruit repressive and activating factors; therefore, these proteins play crucial roles in cellular signaling and epigenetic regulation. Proteins that contain Kme domains are implicated in various diseases, including cancer, making them attractive therapeutic targets for drug and chemical probe discovery. Herein, we report on expanding the utility of a previously reported, Kme-focused DNA-encoded library (DEL), UNCDEL003, as a screening tool for hit discovery through the specific targeting of Kme reader proteins. As an efficient method for library generation, focused DELs are designed based on structural and functional features of a specific class of proteins with the intent of novel hit discovery. To broadly assess the applicability of our library, UNCDEL003 was screened against five diverse Kme reader protein domains (53BP1 TTD, KDM7B JmjC-PHD, CDYL2 CD, CBX2 CD, and LEDGF PWWP) with varying structures and functions. From these screening efforts, we identified hit compounds which contain unique chemical scaffolds distinct from previously reported ligands. The selected hit compounds were synthesized off-DNA and confirmed using primary and secondary assays and assessed for binding selectivity. Hit compounds from these efforts can serve as starting points for additional development and optimization into chemical probes to aid in further understanding the functionality of these therapeutically relevant proteins.


Asunto(s)
Epigénesis Genética , Lisina , ADN/genética
6.
ACS Synth Biol ; 11(4): 1397-1407, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35302756

RESUMEN

CRISPR-Cas9 systems have been developed to regulate gene expression by using either fusions to epigenetic regulators or, more recently, through the use of chemically mediated strategies. These approaches have armed researchers with new tools to examine the function of proteins by intricately controlling expression levels of specific genes. Here we present a CRISPR-based chemical approach that uses a new chemical epigenetic modifier (CEM) to hone to a gene targeted with a catalytically inactive Cas9 (dCas9) bridged to an FK506-binding protein (FKBP) in mammalian cells. One arm of the bifunctional CEM recruits BRD4 to the target site, and the other arm is composed of a bumped ligand that binds to a mutant FKBP with a compensatory hole at F36V. This bump-and-hole strategy allows for activation of target genes in a dose-dependent and reversible fashion with increased specificity and high efficacy, providing a new synthetic biology approach to answer important mechanistic questions in the future.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Animales , Sistemas CRISPR-Cas/genética , Mamíferos/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Unión a Tacrolimus/genética , Proteínas de Unión a Tacrolimus/metabolismo , Factores de Transcripción/genética , Activación Transcripcional
7.
Adv Sci (Weinh) ; 9(10): e2104317, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35119221

RESUMEN

Epigenetic modifications are involved in the onset, development, and maintenance of pain; however, the precise epigenetic mechanism underlying pain regulation remains elusive. Here it is reported that the epigenetic factor chromodomain Y-like (CDYL) is crucial for pain processing. Selective knockout of CDYL in sensory neurons results in decreased neuronal excitability and nociception. Moreover, CDYL facilitates histone 3 lysine 27 trimethylation (H3K27me3) deposition at the Kcnb1 intron region thus silencing voltage-gated potassium channel (Kv ) subfamily member Kv 2.1 transcription. Loss function of CDYL enhances total Kv and Kv 2.1 current density in dorsal root ganglia and knockdown of Kv 2.1 reverses the pain-related phenotypes of Cdyl deficiency mice. Furthermore, focal administration of a novel potent CDYL antagonist blunts nociception and attenuates neuropathic pain. These findings reveal that CDYL is a critical regulator of pain sensation and shed light on the development of novel analgesics targeting epigenetic mechanisms.


Asunto(s)
Proteínas Co-Represoras , Hidroliasas , Nocicepción , Canales de Potasio Shab , Animales , Proteínas Co-Represoras/genética , Proteínas Co-Represoras/metabolismo , Histonas/genética , Hidroliasas/genética , Hidroliasas/metabolismo , Ratones , Células Receptoras Sensoriales/metabolismo , Canales de Potasio Shab/genética
8.
Curr Opin Chem Biol ; 63: 132-144, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33852996

RESUMEN

Responsible for interpreting histone post-translational modifications, epigenetic reader proteins have emerged as novel therapeutic targets for a wide range of diseases. Chemical probes have been critical in enabling target validation studies and have led to translational advances in cancer and inflammation-related pathologies. Here, we present the most recently reported probes of reader proteins that recognize acylated and methylated lysine. We will discuss challenges associated with achieving potent antagonism of reader domains and review ongoing efforts to overcome these hurdles, focusing on targeting strategies including the use of peptidomimetic ligands, allosteric modulators, and protein degraders.


Asunto(s)
Lisina/química , Peptidomiméticos/química , Acetilación , Regulación Alostérica , Sitio Alostérico , Epigénesis Genética , Histonas/química , Humanos , Ligandos , Metilación , Unión Proteica , Conformación Proteica , Procesamiento Proteico-Postraduccional , Relación Estructura-Actividad
9.
Epigenetics Chromatin ; 13(1): 44, 2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-33097091

RESUMEN

The chromatin-binding E3 ubiquitin ligase ubiquitin-like with PHD and RING finger domains 1 (UHRF1) contributes to the maintenance of aberrant DNA methylation patterning in cancer cells through multivalent histone and DNA recognition. The tandem Tudor domain (TTD) of UHRF1 is well-characterized as a reader of lysine 9 di- and tri-methylation on histone H3 (H3K9me2/me3) and, more recently, lysine 126 di- and tri-methylation on DNA ligase 1 (LIG1K126me2/me3). However, the functional significance and selectivity of these interactions remain unclear. In this study, we used protein domain microarrays to search for additional readers of LIG1K126me2, the preferred methyl state bound by the UHRF1 TTD. We show that the UHRF1 TTD binds LIG1K126me2 with high affinity and selectivity compared to other known methyllysine readers. Notably, and unlike H3K9me2/me3, the UHRF1 plant homeodomain (PHD) and its N-terminal linker (L2) do not contribute to multivalent LIG1K126me2 recognition along with the TTD. To test the functional significance of this interaction, we designed a LIG1K126me2 cell-penetrating peptide (CPP). Consistent with LIG1 knockdown, uptake of the CPP had no significant effect on the propagation of DNA methylation patterning across the genomes of bulk populations from high-resolution analysis of several cancer cell lines. Further, we did not detect significant changes in DNA methylation patterning from bulk cell populations after chemical or genetic disruption of lysine methyltransferase activity associated with LIG1K126me2 and H3K9me2. Collectively, these studies identify UHRF1 as a selective reader of LIG1K126me2 in vitro and further implicate the histone and non-histone methyllysine reader activity of the UHRF1 TTD as a dispensable domain function for cancer cell DNA methylation maintenance.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Metilación de ADN , Regulación Neoplásica de la Expresión Génica , Código de Histonas , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/química , Epigénesis Genética , Células HCT116 , Células HeLa , Histonas/química , Histonas/metabolismo , Humanos , Lisina/metabolismo , Metilación , Procesamiento Proteico-Postraduccional , Dominio Tudor , Ubiquitina-Proteína Ligasas/química
10.
ACS Chem Biol ; 15(1): 290-295, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31846298

RESUMEN

Bivalent chemical degraders provide a catalytic route to selectively degrade disease-associated proteins. By linking target-specific ligands with E3 ubiquitin ligase recruiting ligands, these compounds facilitate targeted protein ubiquitination and degradation by the proteasome. Due to the complexity of this multistep mechanism, the development of effective degrader molecules remains a difficult, lengthy, and unpredictable process. Since degraders are large heterobifunctional molecules, the efficacy of these compounds may be limited by poor cell permeability, and an efficient and reliable method to quantify the cell permeability of these compounds is lacking. Herein, we demonstrate that by the addition of a chloroalkane tag on the BRD4 specific degrader, MZ1, cell permeability can be quantified via the chloroalkane penetration assay. By extending this analysis to individual components of the degrader molecule, we have obtained structure-permeability relationships that will be informative for future degrader development, particularly as degraders move into the clinic as potential therapeutics.


Asunto(s)
Dipéptidos/química , Dipéptidos/metabolismo , Compuestos Heterocíclicos con 3 Anillos/química , Compuestos Heterocíclicos con 3 Anillos/metabolismo , Hidrocarburos/química , Proteolisis/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismo , Técnicas Biosensibles , Proteínas de Ciclo Celular/química , Línea Celular , Permeabilidad de la Membrana Celular , Evaluación Preclínica de Medicamentos , Humanos , Ligandos , Estructura Molecular , Relación Estructura-Actividad , Factores de Transcripción/química , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...