Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Epilepsia ; 65(4): 1072-1091, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38411286

RESUMEN

OBJECTIVE: The intricate neuroanatomical structure of the cerebellum is of longstanding interest in epilepsy, but has been poorly characterized within the current corticocentric models of this disease. We quantified cross-sectional regional cerebellar lobule volumes using structural magnetic resonance imaging in 1602 adults with epilepsy and 1022 healthy controls across 22 sites from the global ENIGMA-Epilepsy working group. METHODS: A state-of-the-art deep learning-based approach was employed that parcellates the cerebellum into 28 neuroanatomical subregions. Linear mixed models compared total and regional cerebellar volume in (1) all epilepsies, (2) temporal lobe epilepsy with hippocampal sclerosis (TLE-HS), (3) nonlesional temporal lobe epilepsy, (4) genetic generalized epilepsy, and (5) extratemporal focal epilepsy (ETLE). Relationships were examined for cerebellar volume versus age at seizure onset, duration of epilepsy, phenytoin treatment, and cerebral cortical thickness. RESULTS: Across all epilepsies, reduced total cerebellar volume was observed (d = .42). Maximum volume loss was observed in the corpus medullare (dmax = .49) and posterior lobe gray matter regions, including bilateral lobules VIIB (dmax = .47), crus I/II (dmax = .39), VIIIA (dmax = .45), and VIIIB (dmax = .40). Earlier age at seizure onset ( η ρ max 2 = .05) and longer epilepsy duration ( η ρ max 2 = .06) correlated with reduced volume in these regions. Findings were most pronounced in TLE-HS and ETLE, with distinct neuroanatomical profiles observed in the posterior lobe. Phenytoin treatment was associated with reduced posterior lobe volume. Cerebellum volume correlated with cerebral cortical thinning more strongly in the epilepsy cohort than in controls. SIGNIFICANCE: We provide robust evidence of deep cerebellar and posterior lobe subregional gray matter volume loss in patients with chronic epilepsy. Volume loss was maximal for posterior subregions implicated in nonmotor functions, relative to motor regions of both the anterior and posterior lobe. Associations between cerebral and cerebellar changes, and variability of neuroanatomical profiles across epilepsy syndromes argue for more precise incorporation of cerebellar subregional damage into neurobiological models of epilepsy.


Asunto(s)
Epilepsia del Lóbulo Temporal , Síndromes Epilépticos , Adulto , Humanos , Epilepsia del Lóbulo Temporal/complicaciones , Fenitoína , Estudios Transversales , Síndromes Epilépticos/complicaciones , Cerebelo/diagnóstico por imagen , Cerebelo/patología , Convulsiones/complicaciones , Imagen por Resonancia Magnética/métodos , Atrofia/patología
2.
bioRxiv ; 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37961570

RESUMEN

Objective: The intricate neuroanatomical structure of the cerebellum is of longstanding interest in epilepsy, but has been poorly characterized within the current cortico-centric models of this disease. We quantified cross-sectional regional cerebellar lobule volumes using structural MRI in 1,602 adults with epilepsy and 1,022 healthy controls across twenty-two sites from the global ENIGMA-Epilepsy working group. Methods: A state-of-the-art deep learning-based approach was employed that parcellates the cerebellum into 28 neuroanatomical subregions. Linear mixed models compared total and regional cerebellar volume in i) all epilepsies; ii) temporal lobe epilepsy with hippocampal sclerosis (TLE-HS); iii) non-lesional temporal lobe epilepsy (TLE-NL); iv) genetic generalised epilepsy; and (v) extra-temporal focal epilepsy (ETLE). Relationships were examined for cerebellar volume versus age at seizure onset, duration of epilepsy, phenytoin treatment, and cerebral cortical thickness. Results: Across all epilepsies, reduced total cerebellar volume was observed (d=0.42). Maximum volume loss was observed in the corpus medullare (dmax=0.49) and posterior lobe grey matter regions, including bilateral lobules VIIB (dmax= 0.47), Crus I/II (dmax= 0.39), VIIIA (dmax=0.45) and VIIIB (dmax=0.40). Earlier age at seizure onset (ηρ2max=0.05) and longer epilepsy duration (ηρ2max=0.06) correlated with reduced volume in these regions. Findings were most pronounced in TLE-HS and ETLE with distinct neuroanatomical profiles observed in the posterior lobe. Phenytoin treatment was associated with reduced posterior lobe volume. Cerebellum volume correlated with cerebral cortical thinning more strongly in the epilepsy cohort than in controls. Significance: We provide robust evidence of deep cerebellar and posterior lobe subregional grey matter volume loss in patients with chronic epilepsy. Volume loss was maximal for posterior subregions implicated in non-motor functions, relative to motor regions of both the anterior and posterior lobe. Associations between cerebral and cerebellar changes, and variability of neuroanatomical profiles across epilepsy syndromes argue for more precise incorporation of cerebellum subregions into neurobiological models of epilepsy.

3.
Brain Commun ; 5(5): fcad229, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37744023

RESUMEN

Genome-wide association studies have identified multiple Alzheimer's disease risk loci with small effect sizes. Polygenic risk scores, which aggregate these variants, are associated with grey matter structural changes. However, genome-wide scores do not allow mechanistic interpretations. The present study explored associations between disease pathway-specific scores and grey matter structure in younger and older adults. Data from two separate population cohorts were used as follows: the Avon Longitudinal Study of Parents and Children, mean age 19.8, and UK Biobank, mean age 64.4 (combined n = 18 689). Alzheimer's polygenic risk scores were computed using the largest genome-wide association study of clinically assessed Alzheimer's to date. Relationships between subcortical volumes and cortical thickness, pathway-specific scores and genome-wide scores were examined. Increased pathway-specific scores were associated with reduced cortical thickness in both the younger and older cohorts. For example, the reverse cholesterol transport pathway score showed evidence of association with lower left middle temporal cortex thickness in the younger Avon participants (P = 0.034; beta = -0.013, CI -0.025, -0.001) and in the older UK Biobank participants (P = 0.019; beta = -0.003, CI -0.005, -4.56 × 10-4). Pathway scores were associated with smaller subcortical volumes, such as smaller hippocampal volume, in UK Biobank older adults. There was also evidence of positive association between subcortical volumes in Avon younger adults. For example, the tau protein-binding pathway score was negatively associated with left hippocampal volume in UK Biobank (P = 8.35 × 10-05; beta = -11.392, CI -17.066, -5.718) and positively associated with hippocampal volume in the Avon study (P = 0.040; beta = 51.952, CI 2.445, 101.460). The immune response score had a distinct pattern of association, being only associated with reduced thickness in the right posterior cingulate in older and younger adults (P = 0.011; beta = -0.003, CI -0.005, -0.001 in UK Biobank; P = 0.034; beta = -0.016, CI -0.031, -0.001 in the Avon study). The immune response score was associated with smaller subcortical volumes in the older adults, but not younger adults. The disease pathway scores showed greater evidence of association with imaging phenotypes than the genome-wide score. This suggests that pathway-specific polygenic methods may allow progress towards a mechanistic understanding of structural changes linked to polygenic risk in pre-clinical Alzheimer's disease. Pathway-specific profiling could further define pathophysiology in individuals, moving towards precision medicine in Alzheimer's disease.

4.
Netw Neurosci ; 7(1): 213-233, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37334008

RESUMEN

The link between brain structural connectivity and schizotypy was explored in two healthy participant cohorts, collected at two different neuroimaging centres, comprising 140 and 115 participants, respectively. The participants completed the Schizotypal Personality Questionnaire (SPQ), through which their schizotypy scores were calculated. Diffusion-MRI data were used to perform tractography and to generate the structural brain networks of the participants. The edges of the networks were weighted with the inverse radial diffusivity. Graph theoretical metrics of the default mode, sensorimotor, visual, and auditory subnetworks were derived and their correlation coefficients with the schizotypy scores were calculated. To the best of our knowledge, this is the first time that graph theoretical measures of structural brain networks are investigated in relation to schizotypy. A positive correlation was found between the schizotypy score and the mean node degree and mean clustering coefficient of the sensorimotor and the default mode subnetworks. The nodes driving these correlations were the right postcentral gyrus, the left paracentral lobule, the right superior frontal gyrus, the left parahippocampal gyrus, and the bilateral precuneus, that is, nodes that exhibit compromised functional connectivity in schizophrenia. Implications for schizophrenia and schizotypy are discussed.

5.
Front Neurosci ; 16: 987677, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36532292

RESUMEN

Introduction: We investigated the structural brain networks of 562 young adults in relation to polygenic risk for Alzheimer's disease, using magnetic resonance imaging (MRI) and genotype data from the Avon Longitudinal Study of Parents and Children. Methods: Diffusion MRI data were used to perform whole-brain tractography and generate structural brain networks for the whole-brain connectome, and for the default mode, limbic and visual subnetworks. The mean clustering coefficient, mean betweenness centrality, characteristic path length, global efficiency and mean nodal strength were calculated for these networks, for each participant. The connectivity of the rich-club, feeder and local connections was also calculated. Polygenic risk scores (PRS), estimating each participant's genetic risk, were calculated at genome-wide level and for nine specific disease pathways. Correlations were calculated between the PRS and (a) the graph theoretical metrics of the structural networks and (b) the rich-club, feeder and local connectivity of the whole-brain networks. Results: In the visual subnetwork, the mean nodal strength was negatively correlated with the genome-wide PRS (r = -0.19, p = 1.4 × 10-3), the mean betweenness centrality was positively correlated with the plasma lipoprotein particle assembly PRS (r = 0.16, p = 5.5 × 10-3), and the mean clustering coefficient was negatively correlated with the tau-protein binding PRS (r = -0.16, p = 0.016). In the default mode network, the mean nodal strength was negatively correlated with the genome-wide PRS (r = -0.14, p = 0.044). The rich-club and feeder connectivities were negatively correlated with the genome-wide PRS (r = -0.16, p = 0.035; r = -0.15, p = 0.036). Discussion: We identified small reductions in brain connectivity in young adults at risk of developing Alzheimer's disease in later life.

6.
Nat Commun ; 13(1): 4320, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35896547

RESUMEN

Epilepsy is associated with genetic risk factors and cortico-subcortical network alterations, but associations between neurobiological mechanisms and macroscale connectomics remain unclear. This multisite ENIGMA-Epilepsy study examined whole-brain structural covariance networks in patients with epilepsy and related findings to postmortem epilepsy risk gene expression patterns. Brain network analysis included 578 adults with temporal lobe epilepsy (TLE), 288 adults with idiopathic generalized epilepsy (IGE), and 1328 healthy controls from 18 centres worldwide. Graph theoretical analysis of structural covariance networks revealed increased clustering and path length in orbitofrontal and temporal regions in TLE, suggesting a shift towards network regularization. Conversely, people with IGE showed decreased clustering and path length in fronto-temporo-parietal cortices, indicating a random network configuration. Syndrome-specific topological alterations reflected expression patterns of risk genes for hippocampal sclerosis in TLE and for generalized epilepsy in IGE. These imaging-transcriptomic signatures could potentially guide diagnosis or tailor therapeutic approaches to specific epilepsy syndromes.


Asunto(s)
Conectoma , Epilepsia Generalizada , Epilepsia del Lóbulo Temporal , Epilepsia , Adulto , Epilepsia Generalizada/genética , Epilepsia del Lóbulo Temporal/diagnóstico , Epilepsia del Lóbulo Temporal/genética , Expresión Génica , Humanos , Inmunoglobulina E , Imagen por Resonancia Magnética , Red Nerviosa
7.
Epilepsia ; 63(8): 2081-2095, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35656586

RESUMEN

OBJECTIVE: Recent work has shown that people with common epilepsies have characteristic patterns of cortical thinning, and that these changes may be progressive over time. Leveraging a large multicenter cross-sectional cohort, we investigated whether regional morphometric changes occur in a sequential manner, and whether these changes in people with mesial temporal lobe epilepsy and hippocampal sclerosis (MTLE-HS) correlate with clinical features. METHODS: We extracted regional measures of cortical thickness, surface area, and subcortical brain volumes from T1-weighted (T1W) magnetic resonance imaging (MRI) scans collected by the ENIGMA-Epilepsy consortium, comprising 804 people with MTLE-HS and 1625 healthy controls from 25 centers. Features with a moderate case-control effect size (Cohen d ≥ .5) were used to train an event-based model (EBM), which estimates a sequence of disease-specific biomarker changes from cross-sectional data and assigns a biomarker-based fine-grained disease stage to individual patients. We tested for associations between EBM disease stage and duration of epilepsy, age at onset, and antiseizure medicine (ASM) resistance. RESULTS: In MTLE-HS, decrease in ipsilateral hippocampal volume along with increased asymmetry in hippocampal volume was followed by reduced thickness in neocortical regions, reduction in ipsilateral thalamus volume, and finally, increase in ipsilateral lateral ventricle volume. EBM stage was correlated with duration of illness (Spearman ρ = .293, p = 7.03 × 10-16 ), age at onset (ρ = -.18, p = 9.82 × 10-7 ), and ASM resistance (area under the curve = .59, p = .043, Mann-Whitney U test). However, associations were driven by cases assigned to EBM Stage 0, which represents MTLE-HS with mild or nondetectable abnormality on T1W MRI. SIGNIFICANCE: From cross-sectional MRI, we reconstructed a disease progression model that highlights a sequence of MRI changes that aligns with previous longitudinal studies. This model could be used to stage MTLE-HS subjects in other cohorts and help establish connections between imaging-based progression staging and clinical features.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Atrofia/patología , Biomarcadores , Estudios Transversales , Epilepsia/complicaciones , Epilepsia del Lóbulo Temporal/patología , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Humanos , Imagen por Resonancia Magnética/métodos , Esclerosis/complicaciones
8.
Hum Brain Mapp ; 43(1): 385-398, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33073925

RESUMEN

The hippocampus consists of anatomically and functionally distinct subfields that may be differentially involved in the pathophysiology of bipolar disorder (BD). Here we, the Enhancing NeuroImaging Genetics through Meta-Analysis Bipolar Disorder workinggroup, study hippocampal subfield volumetry in BD. T1-weighted magnetic resonance imaging scans from 4,698 individuals (BD = 1,472, healthy controls [HC] = 3,226) from 23 sites worldwide were processed with FreeSurfer. We used linear mixed-effects models and mega-analysis to investigate differences in hippocampal subfield volumes between BD and HC, followed by analyses of clinical characteristics and medication use. BD showed significantly smaller volumes of the whole hippocampus (Cohen's d = -0.20), cornu ammonis (CA)1 (d = -0.18), CA2/3 (d = -0.11), CA4 (d = -0.19), molecular layer (d = -0.21), granule cell layer of dentate gyrus (d = -0.21), hippocampal tail (d = -0.10), subiculum (d = -0.15), presubiculum (d = -0.18), and hippocampal amygdala transition area (d = -0.17) compared to HC. Lithium users did not show volume differences compared to HC, while non-users did. Antipsychotics or antiepileptic use was associated with smaller volumes. In this largest study of hippocampal subfields in BD to date, we show widespread reductions in nine of 12 subfields studied. The associations were modulated by medication use and specifically the lack of differences between lithium users and HC supports a possible protective role of lithium in BD.


Asunto(s)
Trastorno Bipolar/diagnóstico por imagen , Trastorno Bipolar/patología , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Imagen por Resonancia Magnética , Neuroimagen , Trastorno Bipolar/tratamiento farmacológico , Genética , Hipocampo/efectos de los fármacos , Humanos
9.
Hum Brain Mapp ; 43(1): 414-430, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33027543

RESUMEN

First-degree relatives of patients diagnosed with schizophrenia (SZ-FDRs) show similar patterns of brain abnormalities and cognitive alterations to patients, albeit with smaller effect sizes. First-degree relatives of patients diagnosed with bipolar disorder (BD-FDRs) show divergent patterns; on average, intracranial volume is larger compared to controls, and findings on cognitive alterations in BD-FDRs are inconsistent. Here, we performed a meta-analysis of global and regional brain measures (cortical and subcortical), current IQ, and educational attainment in 5,795 individuals (1,103 SZ-FDRs, 867 BD-FDRs, 2,190 controls, 942 schizophrenia patients, 693 bipolar patients) from 36 schizophrenia and/or bipolar disorder family cohorts, with standardized methods. Compared to controls, SZ-FDRs showed a pattern of widespread thinner cortex, while BD-FDRs had widespread larger cortical surface area. IQ was lower in SZ-FDRs (d = -0.42, p = 3 × 10-5 ), with weak evidence of IQ reductions among BD-FDRs (d = -0.23, p = .045). Both relative groups had similar educational attainment compared to controls. When adjusting for IQ or educational attainment, the group-effects on brain measures changed, albeit modestly. Changes were in the expected direction, with less pronounced brain abnormalities in SZ-FDRs and more pronounced effects in BD-FDRs. To conclude, SZ-FDRs and BD-FDRs show a differential pattern of structural brain abnormalities. In contrast, both had lower IQ scores and similar school achievements compared to controls. Given that brain differences between SZ-FDRs and BD-FDRs remain after adjusting for IQ or educational attainment, we suggest that differential brain developmental processes underlying predisposition for schizophrenia or bipolar disorder are likely independent of general cognitive impairment.


Asunto(s)
Trastorno Bipolar/patología , Disfunción Cognitiva/patología , Escolaridad , Predisposición Genética a la Enfermedad , Inteligencia/fisiología , Neuroimagen , Esquizofrenia/patología , Trastorno Bipolar/complicaciones , Trastorno Bipolar/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Familia , Humanos , Imagen por Resonancia Magnética , Esquizofrenia/complicaciones , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/etiología
10.
Neuropathol Appl Neurobiol ; 48(1): e12758, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34388852

RESUMEN

AIMS: The causes of distinct patterns of reduced cortical thickness in the common human epilepsies, detectable on neuroimaging and with important clinical consequences, are unknown. We investigated the underlying mechanisms of cortical thinning using a systems-level analysis. METHODS: Imaging-based cortical structural maps from a large-scale epilepsy neuroimaging study were overlaid with highly spatially resolved human brain gene expression data from the Allen Human Brain Atlas. Cell-type deconvolution, differential expression analysis and cell-type enrichment analyses were used to identify differences in cell-type distribution. These differences were followed up in post-mortem brain tissue from humans with epilepsy using Iba1 immunolabelling. Furthermore, to investigate a causal effect in cortical thinning, cell-type-specific depletion was used in a murine model of acquired epilepsy. RESULTS: We identified elevated fractions of microglia and endothelial cells in regions of reduced cortical thickness. Differentially expressed genes showed enrichment for microglial markers and, in particular, activated microglial states. Analysis of post-mortem brain tissue from humans with epilepsy confirmed excess activated microglia. In the murine model, transient depletion of activated microglia during the early phase of the disease development prevented cortical thinning and neuronal cell loss in the temporal cortex. Although the development of chronic seizures was unaffected, the epileptic mice with early depletion of activated microglia did not develop deficits in a non-spatial memory test seen in epileptic mice not depleted of microglia. CONCLUSIONS: These convergent data strongly implicate activated microglia in cortical thinning, representing a new dimension for concern and disease modification in the epilepsies, potentially distinct from seizure control.


Asunto(s)
Epilepsia , Microglía , Animales , Encéfalo , Células Endoteliales , Epilepsia/metabolismo , Ratones , Microglía/metabolismo , Convulsiones
11.
Netw Neurosci ; 5(2): 477-504, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34189374

RESUMEN

Understanding how human brain microstructure influences functional connectivity is an important endeavor. In this work, magnetic resonance imaging data from 90 healthy participants were used to calculate structural connectivity matrices using the streamline count, fractional anisotropy, radial diffusivity, and a myelin measure (derived from multicomponent relaxometry) to assign connection strength. Unweighted binarized structural connectivity matrices were also constructed. Magnetoencephalography resting-state data from those participants were used to calculate functional connectivity matrices, via correlations of the Hilbert envelopes of beamformer time series in the delta, theta, alpha, and beta frequency bands. Nonnegative matrix factorization was performed to identify the components of the functional connectivity. Shortest path length and search-information analyses of the structural connectomes were used to predict functional connectivity patterns for each participant. The microstructure-informed algorithms predicted the components of the functional connectivity more accurately than they predicted the total functional connectivity. This provides a methodology to understand functional mechanisms better. The shortest path length algorithm exhibited the highest prediction accuracy. Of the weights of the structural connectivity matrices, the streamline count and the myelin measure gave the most accurate predictions, while the fractional anisotropy performed poorly. Overall, different structural metrics paint very different pictures of the structural connectome and its relationship to functional connectivity.

12.
Sci Adv ; 6(47)2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33208365

RESUMEN

Epilepsy is increasingly conceptualized as a network disorder. In this cross-sectional mega-analysis, we integrated neuroimaging and connectome analysis to identify network associations with atrophy patterns in 1021 adults with epilepsy compared to 1564 healthy controls from 19 international sites. In temporal lobe epilepsy, areas of atrophy colocalized with highly interconnected cortical hub regions, whereas idiopathic generalized epilepsy showed preferential subcortical hub involvement. These morphological abnormalities were anchored to the connectivity profiles of distinct disease epicenters, pointing to temporo-limbic cortices in temporal lobe epilepsy and fronto-central cortices in idiopathic generalized epilepsy. Negative effects of age on atrophy further revealed a strong influence of connectome architecture in temporal lobe, but not idiopathic generalized, epilepsy. Our findings were reproduced across individual sites and single patients and were robust across different analytical methods. Through worldwide collaboration in ENIGMA-Epilepsy, we provided deeper insights into the macroscale features that shape the pathophysiology of common epilepsies.

13.
Transl Psychiatry ; 10(1): 324, 2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32958742

RESUMEN

Rare copy number variants associated with increased risk for neurodevelopmental and psychiatric disorders (referred to as ND-CNVs) are characterized by heterogeneous phenotypes thought to share a considerable degree of overlap. Altered neural integration has often been linked to psychopathology and is a candidate marker for potential convergent mechanisms through which ND-CNVs modify risk; however, the rarity of ND-CNVs means that few studies have assessed their neural correlates. Here, we used magnetoencephalography (MEG) to investigate resting-state oscillatory connectivity in a cohort of 42 adults with ND-CNVs, including deletions or duplications at 22q11.2, 15q11.2, 15q13.3, 16p11.2, 17q12, 1q21.1, 3q29, and 2p16.3, and 42 controls. We observed decreased connectivity between occipital, temporal, and parietal areas in participants with ND-CNVs. This pattern was common across genotypes and not exclusively characteristic of 22q11.2 deletions, which were present in a third of our cohort. Furthermore, a data-driven graph theory framework enabled us to successfully distinguish participants with ND-CNVs from unaffected controls using differences in node centrality and network segregation. Together, our results point to alterations in electrophysiological connectivity as a putative common mechanism through which genetic factors confer increased risk for neurodevelopmental and psychiatric disorders.


Asunto(s)
Variaciones en el Número de Copia de ADN , Trastornos Mentales , Adulto , Estudios de Cohortes , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Fenotipo
14.
Brain ; 143(8): 2454-2473, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32814957

RESUMEN

The epilepsies are commonly accompanied by widespread abnormalities in cerebral white matter. ENIGMA-Epilepsy is a large quantitative brain imaging consortium, aggregating data to investigate patterns of neuroimaging abnormalities in common epilepsy syndromes, including temporal lobe epilepsy, extratemporal epilepsy, and genetic generalized epilepsy. Our goal was to rank the most robust white matter microstructural differences across and within syndromes in a multicentre sample of adult epilepsy patients. Diffusion-weighted MRI data were analysed from 1069 healthy controls and 1249 patients: temporal lobe epilepsy with hippocampal sclerosis (n = 599), temporal lobe epilepsy with normal MRI (n = 275), genetic generalized epilepsy (n = 182) and non-lesional extratemporal epilepsy (n = 193). A harmonized protocol using tract-based spatial statistics was used to derive skeletonized maps of fractional anisotropy and mean diffusivity for each participant, and fibre tracts were segmented using a diffusion MRI atlas. Data were harmonized to correct for scanner-specific variations in diffusion measures using a batch-effect correction tool (ComBat). Analyses of covariance, adjusting for age and sex, examined differences between each epilepsy syndrome and controls for each white matter tract (Bonferroni corrected at P < 0.001). Across 'all epilepsies' lower fractional anisotropy was observed in most fibre tracts with small to medium effect sizes, especially in the corpus callosum, cingulum and external capsule. There were also less robust increases in mean diffusivity. Syndrome-specific fractional anisotropy and mean diffusivity differences were most pronounced in patients with hippocampal sclerosis in the ipsilateral parahippocampal cingulum and external capsule, with smaller effects across most other tracts. Individuals with temporal lobe epilepsy and normal MRI showed a similar pattern of greater ipsilateral than contralateral abnormalities, but less marked than those in patients with hippocampal sclerosis. Patients with generalized and extratemporal epilepsies had pronounced reductions in fractional anisotropy in the corpus callosum, corona radiata and external capsule, and increased mean diffusivity of the anterior corona radiata. Earlier age of seizure onset and longer disease duration were associated with a greater extent of diffusion abnormalities in patients with hippocampal sclerosis. We demonstrate microstructural abnormalities across major association, commissural, and projection fibres in a large multicentre study of epilepsy. Overall, patients with epilepsy showed white matter abnormalities in the corpus callosum, cingulum and external capsule, with differing severity across epilepsy syndromes. These data further define the spectrum of white matter abnormalities in common epilepsy syndromes, yielding more detailed insights into pathological substrates that may explain cognitive and psychiatric co-morbidities and be used to guide biomarker studies of treatment outcomes and/or genetic research.


Asunto(s)
Encéfalo/patología , Síndromes Epilépticos/patología , Sustancia Blanca/patología , Adulto , Imagen de Difusión por Resonancia Magnética/métodos , Femenino , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Masculino , Persona de Mediana Edad
15.
Science ; 367(6484)2020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-32193296

RESUMEN

The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder.


Asunto(s)
Corteza Cerebral/anatomía & histología , Variación Genética , Trastorno por Déficit de Atención con Hiperactividad/genética , Mapeo Encefálico , Cognición , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Humanos , Imagen por Resonancia Magnética , Tamaño de los Órganos/genética , Enfermedad de Parkinson/genética
16.
Mol Psychiatry ; 25(9): 2130-2143, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-30171211

RESUMEN

Bipolar disorders (BDs) are among the leading causes of morbidity and disability. Objective biological markers, such as those based on brain imaging, could aid in clinical management of BD. Machine learning (ML) brings neuroimaging analyses to individual subject level and may potentially allow for their diagnostic use. However, fair and optimal application of ML requires large, multi-site datasets. We applied ML (support vector machines) to MRI data (regional cortical thickness, surface area, subcortical volumes) from 853 BD and 2167 control participants from 13 cohorts in the ENIGMA consortium. We attempted to differentiate BD from control participants, investigated different data handling strategies and studied the neuroimaging/clinical features most important for classification. Individual site accuracies ranged from 45.23% to 81.07%. Aggregate subject-level analyses yielded the highest accuracy (65.23%, 95% CI = 63.47-67.00, ROC-AUC = 71.49%, 95% CI = 69.39-73.59), followed by leave-one-site-out cross-validation (accuracy = 58.67%, 95% CI = 56.70-60.63). Meta-analysis of individual site accuracies did not provide above chance results. There was substantial agreement between the regions that contributed to identification of BD participants in the best performing site and in the aggregate dataset (Cohen's Kappa = 0.83, 95% CI = 0.829-0.831). Treatment with anticonvulsants and age were associated with greater odds of correct classification. Although short of the 80% clinically relevant accuracy threshold, the results are promising and provide a fair and realistic estimate of classification performance, which can be achieved in a large, ecologically valid, multi-site sample of BD participants based on regional neurostructural measures. Furthermore, the significant classification in different samples was based on plausible and similar neuroanatomical features. Future multi-site studies should move towards sharing of raw/voxelwise neuroimaging data.


Asunto(s)
Trastorno Bipolar , Trastorno Bipolar/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Humanos , Aprendizaje Automático , Imagen por Resonancia Magnética , Neuroimagen
18.
Biol Psychiatry ; 86(7): 545-556, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31443932

RESUMEN

BACKGROUND: Schizophrenia and bipolar disorder share genetic liability, and some structural brain abnormalities are common to both conditions. First-degree relatives of patients with schizophrenia (FDRs-SZ) show similar brain abnormalities to patients, albeit with smaller effect sizes. Imaging findings in first-degree relatives of patients with bipolar disorder (FDRs-BD) have been inconsistent in the past, but recent studies report regionally greater volumes compared with control subjects. METHODS: We performed a meta-analysis of global and subcortical brain measures of 6008 individuals (1228 FDRs-SZ, 852 FDRs-BD, 2246 control subjects, 1016 patients with schizophrenia, 666 patients with bipolar disorder) from 34 schizophrenia and/or bipolar disorder family cohorts with standardized methods. Analyses were repeated with a correction for intracranial volume (ICV) and for the presence of any psychopathology in the relatives and control subjects. RESULTS: FDRs-BD had significantly larger ICV (d = +0.16, q < .05 corrected), whereas FDRs-SZ showed smaller thalamic volumes than control subjects (d = -0.12, q < .05 corrected). ICV explained the enlargements in the brain measures in FDRs-BD. In FDRs-SZ, after correction for ICV, total brain, cortical gray matter, cerebral white matter, cerebellar gray and white matter, and thalamus volumes were significantly smaller; the cortex was thinner (d < -0.09, q < .05 corrected); and third ventricle was larger (d = +0.15, q < .05 corrected). The findings were not explained by psychopathology in the relatives or control subjects. CONCLUSIONS: Despite shared genetic liability, FDRs-SZ and FDRs-BD show a differential pattern of structural brain abnormalities, specifically a divergent effect in ICV. This may imply that the neurodevelopmental trajectories leading to brain anomalies in schizophrenia or bipolar disorder are distinct.


Asunto(s)
Trastorno Bipolar , Encéfalo/patología , Predisposición Genética a la Enfermedad , Esquizofrenia , Adulto , Trastorno Bipolar/genética , Trastorno Bipolar/patología , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Esquizofrenia/genética , Esquizofrenia/patología , Adulto Joven
19.
Neuropsychopharmacology ; 44(13): 2285-2293, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31434102

RESUMEN

Fronto-limbic white matter (WM) abnormalities are assumed to lie at the heart of the pathophysiology of bipolar disorder (BD); however, diffusion tensor imaging (DTI) studies have reported heterogeneous results and it is not clear how the clinical heterogeneity is related to the observed differences. This study aimed to identify WM abnormalities that differentiate patients with BD from healthy controls (HC) in the largest DTI dataset of patients with BD to date, collected via the ENIGMA network. We gathered individual tensor-derived regional metrics from 26 cohorts leading to a sample size of N = 3033 (1482 BD and 1551 HC). Mean fractional anisotropy (FA) from 43 regions of interest (ROI) and average whole-brain FA were entered into univariate mega- and meta-analyses to differentiate patients with BD from HC. Mega-analysis revealed significantly lower FA in patients with BD compared with HC in 29 regions, with the highest effect sizes observed within the corpus callosum (R2 = 0.041, Pcorr < 0.001) and cingulum (right: R2 = 0.041, left: R2 = 0.040, Pcorr < 0.001). Lithium medication, later onset and short disease duration were related to higher FA along multiple ROIs. Results of the meta-analysis showed similar effects. We demonstrated widespread WM abnormalities in BD and highlighted that altered WM connectivity within the corpus callosum and the cingulum are strongly associated with BD. These brain abnormalities could represent a biomarker for use in the diagnosis of BD. Interactive three-dimensional visualization of the results is available at www.enigma-viewer.org.


Asunto(s)
Trastorno Bipolar/patología , Encéfalo/patología , Sustancia Blanca/patología , Adulto , Trastorno Bipolar/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Cuerpo Calloso/diagnóstico por imagen , Cuerpo Calloso/patología , Imagen de Difusión Tensora , Femenino , Humanos , Masculino , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/patología , Sustancia Blanca/diagnóstico por imagen
20.
Biol Psychiatry ; 84(11): 803-809, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30227973

RESUMEN

BACKGROUND: Alterations in functional connectivity between the nucleus accumbens (NAcc) and frontal cortices have been previously associated with the presence of psychiatric syndromes, including bipolar disorder (BD). Whether these alterations are a consequence or a risk factor for mental disorders remains unresolved. METHODS: This study included 35 patients with BD, 30 nonaffected siblings of patients with BD, and 23 healthy control subjects to probe functional connectivity at rest between NAcc and the rest of the brain in a cross-sectional design. Blood oxygen level-dependent time series at rest from NAcc were used as seed region in a voxelwise correlational analysis. The strength of the correlations found was compared across groups after Fisher's Z transformation. RESULTS: We found increased functional connectivity between the NAcc and the ventromedial prefrontal cortex-comprising mainly the subgenual anterior cingulate-in patients compared with healthy control subjects. Participants at increased genetic risk but yet resilient-nonaffected siblings-showed functional connectivity values midway between the former two groups. CONCLUSIONS: Our results are indicative of the potential for the connectivity between NAcc and the ventromedial prefrontal cortex to represent an endophenotype for BD.


Asunto(s)
Trastorno Bipolar/fisiopatología , Núcleo Accumbens/fisiopatología , Corteza Prefrontal/fisiopatología , Adulto , Estudios de Casos y Controles , Estudios Transversales , Endofenotipos , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Vías Nerviosas/fisiología , Escalas de Valoración Psiquiátrica , Hermanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...