Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Metab Brain Dis ; 39(5): 929-940, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38848024

RESUMEN

The nature of brain redox metabolism in health, aging, and disease remains to be fully established. Reversible oxidations, to disulfide bonds, of closely spaced (vicinal) protein thiols underlie the catalytic maintenance of redox homeostasis by redoxin enzymes, including thioredoxin peroxidases (peroxiredoxins), and have been implicated in redox buffering and regulation. We propose that non-peroxidase proteins containing vicinal thiols that are responsive to physiological redox perturbations may serve as intrinsic probes of brain redox metabolism. Using redox phenylarsine oxide (PAO)-affinity chromatography, we report that PAO-binding vicinal thiols on creatine kinase B and alpha-enolase from healthy rat brains were preferentially oxidized compared to other selected proteins, including neuron-specific (gamma) enolase, under conditions designed to trap in vivo protein thiol redox states. Moreover, measures of the extents of oxidations of vicinal thiols on total protein, and on creatine kinase B and alpha-enolase, showed that vicinal thiol-linked redox states were stable over the lifespan of rats and revealed a transient reductive shift in these redox couples following decapitation-induced global ischemia. Finally, formation of disulfide-linked complexes between peroxiredoxin-2 and brain proteins was demonstrated on redox blots, supporting a link between protein vicinal thiol redox states and the peroxidase activities of peroxiredoxins. The implications of these findings with respect to underappreciated aspects of brain redox metabolism in health, aging, and ischemia are discussed.


Asunto(s)
Envejecimiento , Isquemia Encefálica , Encéfalo , Oxidación-Reducción , Compuestos de Sulfhidrilo , Animales , Ratas , Envejecimiento/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo , Masculino , Fosfopiruvato Hidratasa/metabolismo , Arsenicales/metabolismo , Forma BB de la Creatina-Quinasa/metabolismo , Ratas Sprague-Dawley
2.
Nat Struct Mol Biol ; 30(1): 22-30, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36522428

RESUMEN

Glycerol-3-phosphate acyltransferase (GPAT)1 is a mitochondrial outer membrane protein that catalyzes the first step of de novo glycerolipid biosynthesis. Hepatic expression of GPAT1 is linked to liver fat accumulation and the severity of nonalcoholic fatty liver diseases. Here we present the cryo-EM structures of human GPAT1 in substrate analog-bound and product-bound states. The structures reveal an N-terminal acyltransferase domain that harbors important catalytic motifs and a tightly associated C-terminal domain that is critical for proper protein folding. Unexpectedly, GPAT1 has no transmembrane regions as previously proposed but instead associates with the membrane via an amphipathic surface patch and an N-terminal loop-helix region that contains a mitochondrial-targeting signal. Combined structural, computational and functional studies uncover a hydrophobic pathway within GPAT1 for lipid trafficking. The results presented herein lay a framework for rational inhibitor development for GPAT1.


Asunto(s)
Hígado , Membranas Mitocondriales , Humanos , Hígado/metabolismo , Membranas Mitocondriales/metabolismo , Glicerol-3-Fosfato O-Aciltransferasa/química , Glicerol-3-Fosfato O-Aciltransferasa/metabolismo , Secuencia de Aminoácidos
3.
J Chem Inf Model ; 62(9): 2239-2247, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-34865473

RESUMEN

By analyzing data sets of replicate DNA-Encoded Library (DEL) selections, an approach for estimating the noise level of the experiment has been developed. Using a logarithm transformation of the number of counts associated with each compound and a subset of compounds with the highest number of counts, it is possible to assess the quality of the data through normalizing the replicates and use this same data to estimate the noise in the experiment. The noise level is seen to be dependent on sequencing depth as well as specific selection conditions. The noise estimation is independent of any cutoff used to remove low frequency compounds from the data analysis. The removal of compounds with only 1-5 read counts greatly reduces some of the challenges encountered in DEL data analysis as it can reduce the data set by greater than 100-fold without impacting the interpretation of the results.


Asunto(s)
ADN , Bibliotecas de Moléculas Pequeñas , Análisis de Datos , Incertidumbre
4.
Bioorg Med Chem ; 41: 116205, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34000509

RESUMEN

The ability to predict chemical structure from DNA sequence has to date been a necessary cornerstone of DNA-encoded library technology. DNA-encoded libraries (DELs) are typically screened by immobilized affinity selection and enriched library members are identified by counting the number of times an individual compound's sequence is observed in the resultant dataset. Those with high signal reads (DEL hits) are subsequently followed up through off-DNA synthesis of the predicted small molecule structures. However, hits followed-up in this manner often fail to translate to confirmed ligands. To address this low conversion rate of DEL hits to off-DNA ligands, we have developed an approach that eliminates the reliance on chemical structure prediction from DNA sequence. Here we describe our method of combining non-combinatorial resynthesis on-DNA following library procedures as a rapid means to assess the probable molecules attached to the DNA barcode. Furthermore, we apply our Bead-Assisted Ligand Isolation Mass Spectrometry (BALI-MS) technique to identify the true binders found within the mixtures of on-DNA synthesis products. Finally, we describe a Normalized Enrichment (NE) metric that allows for the quantitative assessment of affinity selection in these studies. We exemplify how this combined approach enables the identification of putative hit matter against a clinically relevant therapeutic target bisphosphoglycerate mutase, BPGM.


Asunto(s)
ADN/química , Descubrimiento de Drogas , Biblioteca de Genes , Espectrometría de Masas/métodos , Técnicas Químicas Combinatorias , Ligandos , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/química
5.
SLAS Discov ; 26(2): 263-280, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33412987

RESUMEN

Over the past 20 years, the toolbox for discovering small-molecule therapeutic starting points has expanded considerably. Pharmaceutical researchers can now choose from technologies that, in addition to traditional high-throughput knowledge-based and diversity screening, now include the screening of fragment and fragment-like libraries, affinity selection mass spectrometry, and selection against DNA-encoded libraries (DELs). Each of these techniques has its own unique combination of advantages and limitations that makes them more, or less, suitable for different target classes or discovery objectives, such as desired mechanism of action. Layered on top of this are the constraints of the drug-hunters themselves, including budgets, timelines, and available platform capacity; each of these can play a part in dictating the hit identification strategy for a discovery program. In this article, we discuss some of the factors that we use to govern our building of a hit identification roadmap for a program and describe the increasing role that DELs are playing in our discovery strategy. Furthermore, we share our learning during our initial exploration of DEL and highlight the approaches we have evolved to maximize the value returned from DEL selections. Topics addressed include the optimization of library design and production, reagent validation, data analysis, and hit confirmation. We describe how our thinking in these areas has led us to build a DEL platform that has begun to deliver tractable matter to our global discovery portfolio.


Asunto(s)
Descubrimiento de Drogas/métodos , Biblioteca de Genes , Bibliotecas de Moléculas Pequeñas , Descubrimiento de Drogas/normas , Humanos
6.
Chembiochem ; 22(10): 1769-1774, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33491295

RESUMEN

Herein, we report a general and simplified synthesis of fluorophosphonates directly from p-nitrophenylphosphonates. This FP on-demand reaction is mediated by a commercially available polymer-supported fluoride reagent that produces a variety (25 examples) of fluorophosphonates in high yields while only requiring reagent filtration for pure fluorophosphonate isolation. This reaction protocol facilitates the rapid profiling of serine hydrolases with diverse and novel sets of activated phosphonates with differential proteome reactivity. Moreover, slight modification of the procedure into a reaction-to-assay format has enabled additional screening efficiency.


Asunto(s)
Flúor/química , Organofosfonatos/metabolismo , Adipocitos/citología , Adipocitos/metabolismo , Humanos , Organofosfonatos/síntesis química , Organofosfonatos/química , Polímeros/química , Serina Endopeptidasas/metabolismo , Técnicas de Síntesis en Fase Sólida
7.
Neurochem Res ; 45(8): 1825-1838, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32399867

RESUMEN

The mechanisms by which neurons maintain redox homeostasis, disruption of which is linked to disease, are not well known. Hydrogen peroxide, a major cellular oxidant and neuromodulator, can promote reversible oxidations of protein thiols but the scope, targets, and significance of such oxidations occurring in neurons, especially in vivo, are uncertain. Using redox phenylarsine oxide (PAO)-affinity chromatography, which exploits the high-affinity of trivalent arsenicals for protein dithiols, this study investigated the occurrence of reducible and, therefore, potentially regulatory, protein disulfide bonds in Triton X-100-soluble protein fractions from isolated nerve-endings (synaptosomes) prepared from rat brains. Postmortem oxidations of protein thiols were limited by rapidly freezing the brains following euthanasia and, later, homogenizing them in the presence of the N-ethylmaleimide to trap reduced thiols. The reducible disulfide proteome comprised 5.4% of the total synaptosomal protein applied to the immobilized PAO columns and was overrepresented by pathways underlying ATP synaptic supply and demand including synaptic vesicle trafficking. The alpha subunits of plasma membrane Na+, K+-ATPase and the mitochondrial ATP synthase were particularly abundant proteins of the disulfide proteome and were enriched in this fraction by 3.5- and 6.7-fold, respectively. An adaptation of the commonly used "biotin-switch" method provided additional support for selective oxidation of thiols on the alpha subunit of the ATP synthase. We propose that reversible oxidations of protein thiols may underlie a coordinated metabolic response to hydrogen peroxide, serving to both control redox signaling and protect neurons from oxidant stress.


Asunto(s)
Disulfuros/metabolismo , Homeostasis/fisiología , Proteínas del Tejido Nervioso/metabolismo , Proteoma/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Sinaptosomas/metabolismo , Animales , Disulfuros/química , Masculino , Mitocondrias/metabolismo , Proteínas del Tejido Nervioso/química , Oxidación-Reducción , Proteoma/química , ATPasas de Translocación de Protón/metabolismo , Ratas Sprague-Dawley , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Compuestos de Sulfhidrilo/química
8.
Biochem Biophys Res Commun ; 533(2): 249-255, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-32444139

RESUMEN

DEL selections are binding assays conducted with mixtures of chemically diverse DNA-tagged ligands and a screening target. DEL selections use DNA sequence counts to measure target binding, where ideally higher affinity ligands will have higher counts than weaker affinity ligands. However, there is not always a clear relationship between DNA sequence count (assay signal) and binding affinity. This disconnect may be due to the fidelity of library chemistry, where reactions often do not go to completion, and also to repetitive rounds of binding and elution that are standard practice in most DEL selection experiments. We describe here a strategy that addresses both of these issues and provides a means to calculate ligand affinity from primary selection data. The reaction yields of selected compounds during DEL library synthesis can also be predicted with this method.


Asunto(s)
ADN/química , Descubrimiento de Drogas , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Sitios de Unión , Técnicas Químicas Combinatorias , ADN/síntesis química , Humanos , Ligandos , Fosfotransferasas/metabolismo , Unión Proteica , Bibliotecas de Moléculas Pequeñas/síntesis química
9.
Biochem Biophys Res Commun ; 527(1): 250-256, 2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32446376

RESUMEN

DNA-encoded libraries (DELs) can contain billions of unique chemical species; selecting against such large inputs, it is typical to find more candidate binders than is reasonable to pursue for follow-up synthesis and testing. Given this wealth of choices, common practice is to limit synthesis to only those compounds estimated to have the greatest chance of being high-affinity binders; of the many potential factors contributing to this estimation, the strength of the selection signal of a candidate binder is always important. We define here methods and equations which relate the theoretical selection signal of a compound to its affinity and chemical yield. Tests using known binders of BRD4 and ROCK2 support the theory backing these equations and suggest they should be of use for prospectively determining affinity and chemical yield from primary DEL selection data.


Asunto(s)
Proteínas de Ciclo Celular/química , Técnicas Químicas Combinatorias , ADN/química , Biblioteca de Genes , Factores de Transcripción/química , Quinasas Asociadas a rho/química , Humanos
10.
ACS Comb Sci ; 21(10): 650-655, 2019 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-31425646

RESUMEN

DNA-encoded chemical library (DECL) synthesis must occur in aqueous media under conditions that preserve the integrity of the DNA encoding tag. While the identification of "DNA-compatible" reaction conditions is critical for the development of DECL designs that explore previously inaccessible chemical space, reports measuring such compatibility have been largely restricted to methods that do not faithfully capture the impact of reaction conditions on DNA fidelity in solution phase. Here we report a comprehensive methodology that uses soluble DNA substrates that exactly recapitulate DNA's exposure to the chemically reactive species of DECL synthesis. This approach includes the assessment of chemical fidelity (reaction yield and purity), encoding fidelity (ligation efficiency), and readability (DNA compatibility), revealing the fate of the DNA tag during DECL chemistry from a single platform.


Asunto(s)
ADN/química , Bibliotecas de Moléculas Pequeñas/síntesis química , Técnicas Químicas Combinatorias , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/química , Soluciones
11.
Cell Mol Neurobiol ; 39(5): 577-590, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30904976

RESUMEN

Free radical-mediated oxidative stress, neuroinflammation, and excitotoxicity have long been considered insults relevant to the progression of Alzheimer's disease and other aging-related neurodegenerative disorders (NDD). Among these phenomena, the significance of oxidative stress and, more generally, redox perturbations, for NDD remain ill-defined and unsubstantiated. Here, I argue that (i) free radical-mediated oxidations of biomolecules can be dissociated from the progression of NDD, (ii) oxidative stress fails as a descriptor of cellular redox states under conditions relevant to disease, and (iii) aberrant upregulation of compensatory reducing activities in neural cells, resulting in reductive shifts in thiol-based redox potentials, may be an overlooked and paradoxical contributor to disease progression. In particular, I summarize evidence which supports the view that reductive shifts in the extracellular space can occur in response to oxidant and inflammatory signals and that these have the potential to reduce putative regulatory disulfide bonds in exofacial domains of the N-methyl-D-aspartate receptor, leading potentially to aberrant increases in neuronal excitability and, if sustained, excitotoxicity. The novel reductive reprogramming hypothesis of neurodegeneration presented here provides an alternative view of redox perturbations in NDD and links these to both neuroinflammation and excitotoxicity.


Asunto(s)
Inflamación/patología , Degeneración Nerviosa/patología , Sistema Nervioso/patología , Neurotoxinas/toxicidad , Animales , Humanos , Sistema Nervioso/efectos de los fármacos , Oxidación-Reducción , Estrés Oxidativo
12.
Metab Brain Dis ; 34(1): 183-189, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30414012

RESUMEN

The biochemical pathways by which aberrant psychophysiological stress promotes neuronal damage and increases the risks for central nervous system diseases are not well understood. In light of previous findings that psychophysiological stress, modeled by animal restraint, can increase the activities and expression levels of nitric oxide synthase isoforms in multiple brain regions, we examined the effects of restraint, for up to 6 h, on levels of S-nitrosylated proteins and NOx (nitrite + nitrate), a marker for high-level nitric oxide generation, in the brains of rats. Results identify functionally-diverse protein targets of S-nitrosylation in the brain, in vivo, and demonstrate the potential for widespread loss of protein nitrosothiols following prolonged restraint despite a concomitant increase in NOx levels. Since physiological levels of protein S-nitrosylation can protect neurons by maintaining redox homeostasis, by limiting excitatory neurotransmission, and by inhibiting apoptotic and inflammatory pathways, we propose that over-activation of protein denitrosylation pathways following sustained or repeated stress may facilitate neural damage and early stages of stress-related central nervous system disease.


Asunto(s)
Encéfalo/metabolismo , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico/metabolismo , Proteínas/metabolismo , Estrés Fisiológico/fisiología , Estrés Psicológico/metabolismo , Animales , Neuronas/metabolismo , Proteómica , Ratas , Restricción Física
13.
Clin Transl Sci ; 11(5): 461-470, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29877628

RESUMEN

The Assay Guidance Manual (AGM) is an eBook of best practices for the design, development, and implementation of robust assays for early drug discovery. Initiated by pharmaceutical company scientists, the manual provides guidance for designing a "testing funnel" of assays to identify genuine hits using high-throughput screening (HTS) and advancing them through preclinical development. Combined with a workshop/tutorial component, the overall goal of the AGM is to provide a valuable resource for training translational scientists.


Asunto(s)
Bioensayo/métodos , Descubrimiento de Drogas , Geografía , Ensayos Analíticos de Alto Rendimiento , Humanos , Investigación Biomédica Traslacional
14.
PLoS One ; 13(6): e0198374, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29879184

RESUMEN

Protein tyrosine kinase 6 (PTK6, or BRK) is aberrantly expressed in breast cancers, and emerging as an oncogene that promotes tumor cell proliferation, migration and evasion. Both kinase-dependent and -independent functions of PTK6 in driving tumor growth have been described, therefore targeting PTK6 kinase activity by small molecule inhibitors as a therapeutic approach to treat cancers remains to be validated. In this study, we identified novel, potent and selective PTK6 kinase inhibitors as a means to investigate the role of PTK6 kinase activity in breast tumorigenesis. We report here the crystal structures of apo-PTK6 and inhibitor-bound PTK6 complexes, providing the structural basis for small molecule interaction with PTK6. The kinase inhibitors moderately suppress tumor cell growth in 2D and 3D cell cultures. However, the tumor cell growth inhibition shows neither correlation with the PTK6 kinase activity inhibition, nor the total or activated PTK6 protein levels in tumor cells, suggesting that the tumor cell growth is independent of PTK6 kinase activity. Furthermore, in engineered breast tumor cells overexpressing PTK6, the inhibition of PTK6 kinase activity does not parallel the inhibition of tumor cell growth with a >500-fold shift in compound potencies (IC50 values). Overall, these findings suggest that the kinase activity of PTK6 does not play a significant role in tumorigenesis, thus providing important evidence against PTK6 kinase as a potential therapeutic target for breast cancer treatment.


Asunto(s)
Neoplasias de la Mama/metabolismo , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Proteínas Tirosina Quinasas/química , Proteínas Tirosina Quinasas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cristalografía por Rayos X , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Modelos Moleculares , Proteínas de Neoplasias/genética , Fosforilación , Proteínas Tirosina Quinasas/genética , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad
15.
J Med Chem ; 61(7): 3008-3026, 2018 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-29498843

RESUMEN

Monoacylglycerol lipase (MAGL) inhibition provides a potential treatment approach to neuroinflammation through modulation of both the endocannabinoid pathway and arachidonoyl signaling in the central nervous system (CNS). Herein we report the discovery of compound 15 (PF-06795071), a potent and selective covalent MAGL inhibitor, featuring a novel trifluoromethyl glycol leaving group that confers significant physicochemical property improvements as compared with earlier inhibitor series with more lipophilic leaving groups. The design strategy focused on identifying an optimized leaving group that delivers MAGL potency, serine hydrolase selectivity, and CNS exposure while simultaneously reducing log  D, improving solubility, and minimizing chemical lability. Compound 15 achieves excellent CNS exposure, extended 2-AG elevation effect in vivo, and decreased brain inflammatory markers in response to an inflammatory challenge.


Asunto(s)
Antiinflamatorios no Esteroideos/síntesis química , Antiinflamatorios no Esteroideos/farmacología , Carbamatos/síntesis química , Carbamatos/farmacología , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Monoacilglicerol Lipasas/antagonistas & inhibidores , Neuritis/tratamiento farmacológico , Amidohidrolasas/antagonistas & inhibidores , Animales , Ácidos Araquidónicos/metabolismo , Biomarcadores , Química Encefálica/efectos de los fármacos , Perros , Diseño de Fármacos , Descubrimiento de Drogas , Endocannabinoides/metabolismo , Glicéridos/metabolismo , Humanos , Macaca mulatta , Modelos Moleculares , Ratas , Ratas Wistar , Relación Estructura-Actividad
16.
J Med Chem ; 60(23): 9860-9873, 2017 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-29148769

RESUMEN

Monoacylglycerol lipase (MAGL) is the main enzyme responsible for degradation of the endocannabinoid 2-arachidonoylglycerol (2-AG) in the CNS. MAGL catalyzes the conversion of 2-AG to arachidonic acid (AA), a precursor to the proinflammatory eicosannoids such as prostaglandins. Herein we describe highly efficient MAGL inhibitors, identified through a parallel medicinal chemistry approach that highlighted the improved efficiency of azetidine and piperidine-derived carbamates. The discovery and optimization of 3-substituted azetidine carbamate irreversible inhibitors of MAGL were aided by the generation of inhibitor-bound MAGL crystal structures. Compound 6, a highly efficient and selective MAGL inhibitor against recombinant enzyme and in a cellular context, was tested in vivo and shown to elevate central 2-AG levels at a 10 mg/kg dose.


Asunto(s)
Azetidinas/farmacología , Carbamatos/farmacología , Inhibidores Enzimáticos/farmacología , Monoacilglicerol Lipasas/antagonistas & inhibidores , Piperidinas/farmacología , Animales , Azetidinas/química , Azetidinas/farmacocinética , Carbamatos/química , Carbamatos/farmacocinética , Línea Celular , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacocinética , Humanos , Ratones Endogámicos C57BL , Modelos Moleculares , Monoacilglicerol Lipasas/metabolismo , Piperidinas/química , Piperidinas/farmacocinética , Proteínas Recombinantes/metabolismo
17.
PLoS One ; 12(9): e0185079, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28945765

RESUMEN

C5-substituted 2,4-diaminoquinazoline inhibitors of the decapping scavenger enzyme DcpS (DAQ-DcpSi) have been developed for the treatment of spinal muscular atrophy (SMA), which is caused by genetic deficiency in the Survival Motor Neuron (SMN) protein. These compounds are claimed to act as SMN2 transcriptional activators but data underlying that claim are equivocal. In addition it is unclear whether the claimed effects on SMN2 are a direct consequence of DcpS inhibitor or might be a consequence of lysosomotropism, which is known to be neuroprotective. DAQ-DcpSi effects were characterized in cells in vitro utilizing DcpS knockdown and 7-methyl analogues as probes for DcpS vs non-DcpS-mediated effects. We also performed analysis of Smn transcript levels, RNA-Seq analysis of the transcriptome and SMN protein in order to identify affected pathways underlying the therapeutic effect, and studied lysosomotropic and non-lysosomotropic DAQ-DCpSi effects in 2B/- SMA mice. Treatment of cells caused modest and transient SMN2 mRNA increases with either no change or a decrease in SMNΔ7 and no change in SMN1 transcripts or SMN protein. RNA-Seq analysis of DAQ-DcpSi-treated N2a cells revealed significant changes in expression (both up and down) of approximately 2,000 genes across a broad range of pathways. Treatment of 2B/- SMA mice with both lysomotropic and non-lysosomotropic DAQ-DcpSi compounds had similar effects on disease phenotype indicating that the therapeutic mechanism of action is not a consequence of lysosomotropism. In striking contrast to the findings in vitro, Smn transcripts were robustly changed in tissues but there was no increase in SMN protein levels in spinal cord. We conclude that DAQ-DcpSi have reproducible benefit in SMA mice and a broad spectrum of biological effects in vitro and in vivo, but these are complex, context specific, and not the result of simple SMN2 transcriptional activation.


Asunto(s)
Endorribonucleasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Atrofia Muscular Espinal/tratamiento farmacológico , Atrofia Muscular Espinal/enzimología , Quinazolinas/farmacología , Animales , Línea Celular , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/química , Femenino , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Masculino , Ratones , Ratones Noqueados , Atrofia Muscular Espinal/genética , Regiones Promotoras Genéticas , Quinazolinas/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteína 2 para la Supervivencia de la Neurona Motora/deficiencia , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/metabolismo
18.
J Med Chem ; 60(7): 3094-3108, 2017 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-28257199

RESUMEN

The C-5 substituted 2,4-diaminoquinazoline RG3039 (compound 1), a member of a chemical series that was identified and optimized using an SMN2 promoter screen, prolongs survival and improves motor function in a mouse model of spinal muscular atrophy (SMA). It is a potent inhibitor of the mRNA decapping scavenger enzyme (DcpS), but the mechanism whereby DcpS inhibition leads to therapeutic benefit is unclear. Compound 1 is a dibasic lipophilic molecule that is predicted to accumulate in lysosomes. To understand if the in vivo efficacy is due to DcpS inhibition or other effects resulting from the physicochemical properties of the chemotype, we undertook structure based molecular design to identify DcpS inhibitors with improved physicochemical properties. Herein we describe the design, synthesis, and in vitro pharmacological characterization of these DcpS inhibitors along with the in vivo mouse CNS PK profile of PF-DcpSi (compound 24), one of the analogs found to be efficacious in SMA mouse model.


Asunto(s)
Diseño de Fármacos , Endorribonucleasas/antagonistas & inhibidores , Atrofia Muscular Espinal/tratamiento farmacológico , Quinazolinas/química , Quinazolinas/uso terapéutico , ARN Mensajero/antagonistas & inhibidores , Animales , Modelos Animales de Enfermedad , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacocinética , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Células HEK293 , Humanos , Ratones , Simulación del Acoplamiento Molecular , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Quinazolinas/farmacocinética , Quinazolinas/farmacología , ARN Mensajero/genética , Proteína 2 para la Supervivencia de la Neurona Motora
19.
Neurochem Res ; 41(10): 2763-2770, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27350580

RESUMEN

Oxidative stress is a long-hypothesized cause of diverse neurological and psychiatric disorders but the pathways by which physiological redox perturbations may detour healthy brain development and aging are unknown. We reported recently (Foley et al., Neurochem Res 39:2030-2039, 2014) that two-electron oxidations, to disulfides, of protein vicinal thiols can vary markedly in association with more modest oxidations of the glutathione redox couple in brains from healthy adolescent rats whereas levels of protein S-glutathionylation were low and unchanged. Here, we demonstrate that the selective oxidations of protein vicinal thiols, occurring only in the more oxidized brains under study, were linked specifically to a peroxide stress as evidenced by increased oxidations, to disulfides, of the presumed catalytic vicinal thiols of peroxiredoxins 1 and 2. Moreover, we identify the catalytic subunit(s) of Na+, K+-ATPase, tubulins, glyceraldehyde-3-phosphate dehydrogenase, and protein phosphatase 1, all of which can modulate glutamate neurotransmission and the vulnerability of neurons to excitotoxicity, as non-peroxidase proteins exhibiting prominent oxidations of vicinal thiols. The two-electron pathway, demonstrated here, linking physiological redox perturbations in otherwise healthy brains to protein determinants of excitotoxicity, suggests an alternative to free radical pathways by which oxidative stress may impact brain development and aging.


Asunto(s)
Encéfalo/efectos de los fármacos , Disulfuros/farmacología , Neuronas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Animales , Encéfalo/metabolismo , Radicales Libres/metabolismo , Disulfuro de Glutatión/metabolismo , Neuronas/metabolismo , Estrés Oxidativo/fisiología , Peroxirredoxinas/farmacología , Ratas Sprague-Dawley , Compuestos de Sulfhidrilo/metabolismo , Transmisión Sináptica/fisiología
20.
J Biomol Screen ; 21(10): 1125-1131, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27269812

RESUMEN

We describe a polyacrylamide gel casting cassette that overcomes limitations of commercially available gel electrophoresis equipment. This apparatus molds a single polyacrylamide gel that can evaluate more than 200 samples in parallel, is loaded with a multichannel pipettor, and is flexible with respect to composition of the separating matrix. We demonstrate its use to characterize inhibitors of enzymes that modify protein and nucleic acid substrates. Throughputs of greater than 1000 samples per day were achieved when this system was paired with a quantitative laser-based imaging system, yielding data of remarkable quality.


Asunto(s)
Ensayo de Cambio de Movilidad Electroforética/métodos , Inhibidores Enzimáticos/aislamiento & purificación , Ensayos Analíticos de Alto Rendimiento/métodos , Bibliotecas de Moléculas Pequeñas/química , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Inhibidores Enzimáticos/química , Humanos , Unión Proteica , Bibliotecas de Moléculas Pequeñas/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...