Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Circ Cardiovasc Interv ; 6(4): 468-75, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23899870

RESUMEN

BACKGROUND: Beating-heart image-guided intracardiac interventions have been evolving rapidly. To extend the domain of catheter-based and transcardiac interventions into reconstructive surgery, a new robotic tool delivery platform and a tissue approximation device have been developed. Initial results using these tools to perform patent foramen ovale closure are described. METHODS AND RESULTS: A robotic tool delivery platform comprising superelastic metal tubes provides the capability of delivering and manipulating tools and devices inside the beating heart. A new device technology is also presented that uses a metal-based microelectromechanical systems-manufacturing process to produce fully assembled and fully functional millimeter-scale tools. As a demonstration of both technologies, patent foramen ovale creation and closure was performed in a swine model. In the first group of animals (n=10), a preliminary study was performed. The procedural technique was validated with a transcardiac hand-held delivery platform and epicardial echocardiography, video-assisted cardioscopy, and fluoroscopy. In the second group (n=9), the procedure was performed percutaneously using the robotic tool delivery platform under epicardial echocardiography and fluoroscopy imaging. All patent foramen ovales were completely closed in the first group. In the second group, the patent foramen ovale was not successfully created in 1 animal, and the defects were completely closed in 6 of the 8 remaining animals. CONCLUSIONS: In contrast to existing robotic catheter technologies, the robotic tool delivery platform uses a combination of stiffness and active steerability along its length to provide the positioning accuracy and force-application capability necessary for tissue manipulation. In combination with a microelectromechanical systems tool technology, it can enable reconstructive procedures inside the beating heart.


Asunto(s)
Foramen Oval Permeable/cirugía , Robótica/instrumentación , Animales , Cateterismo Cardíaco , Modelos Animales de Enfermedad , Fluoroscopía , Metales , Procedimientos de Cirugía Plástica , Porcinos
2.
Int J Rob Res ; 31(9): 1081-1093, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23750066

RESUMEN

Achieving superior outcomes through the use of robots in medical applications requires an integrated approach to the design of the robot, tooling and the procedure itself. In this paper, this approach is applied to develop a robotic technique for closing abnormal communication between the atria of the heart. The goal is to achieve the efficacy of surgical closure as performed on a stopped, open heart with the reduced risk and trauma of a beating-heart catheter-based procedure. In the proposed approach, a concentric tube robot is used to percutaneously access the right atrium and deploy a tissue approximation device. The device is constructed using a metal microelectromechanical system (MEMS) fabrication process and is designed to both fit the manipulation capabilities of the robot as well as to reproduce the beneficial features of surgical closure by suture. The effectiveness of the approach is demonstrated through ex vivo and in vivo experiments.

3.
IEEE Int Conf Robot Autom ; 2011: 411-416, 2011 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-22229109

RESUMEN

Achieving superior outcomes through the use of robots in medical applications requires an integrated approach to the design of the robot, tooling and the procedure itself. In this paper, this approach is applied to develop a robotic technique for closing abnormal communication between the atria of the heart. The goal is to achieve the efficacy of surgical closure as performed on a stopped, open heart with the reduced risk and trauma of a beating-heart catheter-based procedure. In the proposed approach, a concentric tube robot is used to percutaneously access the right atrium and deploy a tissue approximation device. The device is constructed using a metal MEMS fabrication process and is designed to both fit the manipulation capabilities of the robot as well as to reproduce the beneficial features of surgical closure by suture. Experimental results demonstrate device efficacy through manual in-vivo deployment and bench-top robotic deployment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...