Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Med Genet ; 59(7): 669-677, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34321324

RESUMEN

BACKGROUND: Variants in HECW2 have recently been reported to cause a neurodevelopmental disorder with hypotonia, seizures and impaired language; however, only six variants have been reported and the clinical characteristics have only broadly been defined. METHODS: Molecular and clinical data were collected from clinical and research cohorts. Massive parallel sequencing was performed and identified individuals with a HECW2-related neurodevelopmental disorder. RESULTS: We identified 13 novel missense variants in HECW2 in 22 unpublished cases, of which 18 were confirmed to have a de novo variant. In addition, we reviewed the genotypes and phenotypes of previously reported and new cases with HECW2 variants (n=35 cases). All variants identified are missense, and the majority of likely pathogenic and pathogenic variants are located in or near the C-terminal HECT domain (88.2%). We identified several clustered variants and four recurrent variants (p.(Arg1191Gln);p.(Asn1199Lys);p.(Phe1327Ser);p.(Arg1330Trp)). Two variants, (p.(Arg1191Gln);p.(Arg1330Trp)), accounted for 22.9% and 20% of cases, respectively. Clinical characterisation suggests complete penetrance for hypotonia with or without spasticity (100%), developmental delay/intellectual disability (100%) and developmental language disorder (100%). Other common features are behavioural problems (88.9%), vision problems (83.9%), motor coordination/movement (75%) and gastrointestinal issues (70%). Seizures were present in 61.3% of individuals. Genotype-phenotype analysis shows that HECT domain variants are more frequently associated with cortical visual impairment and gastrointestinal issues. Seizures were only observed in individuals with variants in or near the HECT domain. CONCLUSION: We provide a comprehensive review and expansion of the genotypic and phenotypic spectrum of HECW2 disorders, aiding future molecular and clinical diagnosis and management.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Ubiquitina-Proteína Ligasas , Genotipo , Humanos , Discapacidad Intelectual/genética , Hipotonía Muscular/genética , Hipotonía Muscular/patología , Trastornos del Neurodesarrollo/genética , Fenotipo , Convulsiones/genética , Ubiquitina-Proteína Ligasas/genética
2.
Am J Hum Genet ; 108(6): 1053-1068, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-33909990

RESUMEN

Truncating variants in exons 33 and 34 of the SNF2-related CREBBP activator protein (SRCAP) gene cause the neurodevelopmental disorder (NDD) Floating-Harbor syndrome (FLHS), characterized by short stature, speech delay, and facial dysmorphism. Here, we present a cohort of 33 individuals with clinical features distinct from FLHS and truncating (mostly de novo) SRCAP variants either proximal (n = 28) or distal (n = 5) to the FLHS locus. Detailed clinical characterization of the proximal SRCAP individuals identified shared characteristics: developmental delay with or without intellectual disability, behavioral and psychiatric problems, non-specific facial features, musculoskeletal issues, and hypotonia. Because FLHS is known to be associated with a unique set of DNA methylation (DNAm) changes in blood, a DNAm signature, we investigated whether there was a distinct signature associated with our affected individuals. A machine-learning model, based on the FLHS DNAm signature, negatively classified all our tested subjects. Comparing proximal variants with typically developing controls, we identified a DNAm signature distinct from the FLHS signature. Based on the DNAm and clinical data, we refer to the condition as "non-FLHS SRCAP-related NDD." All five distal variants classified negatively using the FLHS DNAm model while two classified positively using the proximal model. This suggests divergent pathogenicity of these variants, though clinically the distal group presented with NDD, similar to the proximal SRCAP group. In summary, for SRCAP, there is a clear relationship between variant location, DNAm profile, and clinical phenotype. These results highlight the power of combined epigenetic, molecular, and clinical studies to identify and characterize genotype-epigenotype-phenotype correlations.


Asunto(s)
Anomalías Múltiples/patología , Adenosina Trifosfatasas/genética , Anomalías Craneofaciales/patología , Metilación de ADN , Epigénesis Genética , Trastornos del Crecimiento/patología , Defectos del Tabique Interventricular/patología , Mutación , Trastornos del Neurodesarrollo/patología , Fenotipo , Anomalías Múltiples/genética , Estudios de Casos y Controles , Estudios de Cohortes , Anomalías Craneofaciales/genética , Femenino , Predisposición Genética a la Enfermedad , Trastornos del Crecimiento/genética , Defectos del Tabique Interventricular/genética , Humanos , Recién Nacido , Masculino , Trastornos del Neurodesarrollo/genética
3.
Neurogenetics ; 17(1): 43-9, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26576547

RESUMEN

Protein phosphatase 2A (PP2A) is a heterotrimeric protein serine/threonine phosphatase and is involved in a broad range of cellular processes. PPP2R5D is a regulatory B subunit of PP2A and plays an important role in regulating key neuronal and developmental regulation processes such as PI3K/AKT and glycogen synthase kinase 3 beta (GSK3ß)-mediated cell growth, chromatin remodeling, and gene transcriptional regulation. Using whole-exome sequencing (WES), we identified four de novo variants in PPP2R5D in a total of seven unrelated individuals with intellectual disability (ID) and other shared clinical characteristics, including autism spectrum disorder, macrocephaly, hypotonia, seizures, and dysmorphic features. Among the four variants, two have been previously reported and two are novel. All four amino acids are highly conserved among the PP2A subunit family, and all change a negatively charged acidic glutamic acid (E) to a positively charged basic lysine (K) and are predicted to disrupt the PP2A subunit binding and impair the dephosphorylation capacity. Our data provides further support for PPP2R5D as a genetic cause of ID.


Asunto(s)
Trastorno Autístico/genética , Discapacidad Intelectual/genética , Megalencefalia/genética , Hipotonía Muscular/genética , Mutación Missense , Proteína Fosfatasa 2/genética , Adolescente , Trastorno del Espectro Autista/epidemiología , Trastorno del Espectro Autista/genética , Trastorno Autístico/epidemiología , Niño , Preescolar , Análisis Mutacional de ADN , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Lactante , Discapacidad Intelectual/epidemiología , Masculino , Megalencefalia/epidemiología , Hipotonía Muscular/epidemiología , Polimorfismo de Nucleótido Simple
4.
Neurogenetics ; 16(4): 307-14, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26238514

RESUMEN

The etiology of intellectual disabilities (ID) remains unknown for the majority of patients. Due to reduced reproductive fitness in many individuals with ID, de novo mutations account for a significant portion of severe ID. The ATP-dependent SWI/SNF chromatin modifier has been linked with neurodevelopmental disorders including ID and autism. ARID2 is an intrinsic component of polybromo-associated BAF (PBAF), the SWI/SNF subcomplex. In this study, we used clinical whole exome sequencing (WES) in proband-parent-trios to identify the etiology of ID. We identified four independent, novel, loss of function variants in ARID2 gene in four patients, three of which were confirmed to be de novo. The patients all have ID and share other clinical characteristics including attention deficit hyperactivity disorder, short stature, dysmorphic facial features, and Wormian bones. All four novel variants are predicted to lead to a premature termination with the loss of the two conservative zinc finger motifs. This is the first report of mutations in ARID2 associated with developmental delay and ID.


Asunto(s)
Discapacidades del Desarrollo/genética , Discapacidad Intelectual/genética , Mutación , Factores de Transcripción/genética , Adolescente , Niño , Exoma , Femenino , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA