Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
iScience ; 27(5): 109706, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38660398

RESUMEN

SARS-CoV-2 Omicron variant has evolved into sublineages. Here, we compared the neutralization susceptibility and viral fitness of EG.5.1 and XBB.1.9.1. Serum neutralization antibody titer against EG.5.1 was 1.71-fold lower than that for XBB.1.9.1. However, there was no significant difference in virus replication between EG.5.1 and XBB.1.9.1 in human nasal organoids and TMPRSS2/ACE2 over-expressing A549 cells. No significant difference was observed in competitive fitness and cytokine/chemokine response between EG.5.1 and XBB.1.9.1. Both EG.5.1 and XBB.1.9.1 replicated more robustly in the nasal organoid from a younger adult than that from an older adult. Our findings suggest that enhanced immune escape contributes to the dominance of EG.5.1 over earlier sublineages. The combination of population serum susceptibility testing and viral fitness evaluation with nasal organoids may hold promise in risk assessment of upcoming variants. Utilization of serum specimens and nasal organoid derived from older adults provides a targeted risk assessment for this vulnerable population.

2.
Commun Med (Lond) ; 3(1): 168, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37993690

RESUMEN

BACKGROUND: Mpox virus (MPXV), previously known as monkeypox virus, has spread globally in 2022. An accurate and convenient antibody test is essential for the determination of seroprevalence and for studying immune response after natural infection or vaccination. Most seroprevalence or vaccine studies used either live MPXV (or vaccinia virus [VACV]) or inactivated MPXV (or VACV) culture lysate for serological assays, but MPXV culture can only be performed in biosafety level 3 (BSL-3) facilities. Here, we developed and evaluated an enzyme immunoassay (EIA) based on the MPXV A29 surface envelope protein. METHODS: We compared the specificity of the MPXV A29, VACV A27, and VACV lysate EIA using serum specimens collected prior to the global spread of MPXV. Next, we performed these EIAs for serum specimens collected from two mpox patients and an MVA-BN vaccine recipient. We also assessed the kinetics of plasmblast and MPXV A29-specific B-cell response. RESULTS: Using sera collected from different age groups in Hong Kong, we found that most individuals, including those born before 1981 who have received the smallpox vaccine, tested negative using the MPXV A29 protein. MPXV A29-specific antibody could be detected in the serum of mpox patients and an MVA-BN recipient. In a mpox patient, the frequency of plasmablast and MPXV A29-specific B cell peaked on day 8 post-symptom onset and gradually decreased. Finally, we demonstrated that antibodies against the A29 protein can be used for immunofluorescence staining of MPXV-infected cells. CONCLUSIONS: MPXV A29 protein is suitable for studying the immune response against MPXV infection.


Since early 2022, mpox (monkeypox) has been reported in many countries where the disease is not regularly found to occur. The aim of the study was to develop and evaluate the performance of laboratory assays based on the mpox virus surface protein, named A29. We found our assays could accurately distinguish naturally infected cases from smallpox vaccine recipients as well as those who were neither infected nor vaccinated. Our assays provide a useful tool for studying the host immune response to mpox virus.

3.
Sci Rep ; 13(1): 19932, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37968273

RESUMEN

Chronic kidney disease (CKD) patients are at higher risk of severe COVID-19. Humoral and cellular immunity from prior infection or vaccination are important for protection, but the neutralizing antibody (nAb) response against SARS-CoV-2 variants is impaired. We investigated the variant-specific nAb and T cell immunity among CKD patients. Adult CKD patients were recruited between August and October 2022. nAb against the SARS-CoV-2 (ancestral strains and four Omicron sublineages) and T cell response were measured using the live virus neutralization assay and interferon-gamma release assay (IGRA). The correlation between nAb/T-cell response and subsequent infection after recruitment were also determined. Among the 88 recruited patients, 95.5% had prior infection or had completed the primary vaccine series. However, only 77.3% had detectable nAb against at least one SARS-CoV-2 strains, 59.1% tested positive in IGRA, and 52.3% had detectable nAb and tested positive in the IGRA. The nAb geometic mean titers (GMTs) against XBB.1, BA.5 and BA.2.3.20 were significantly lower than those against BA.2 and ancestral strain. Prior SARS-CoV-2 infection was associated with elevated nAb and T cell response. More kidney transplant recipients (KTRs) showed absent nAb and T cell response (36.8% vs. 10.1%), despite a higher prevalence of vaccine booster in this population (94.7% vs. 50.7%). Lower levels of nAb titer and T cell response were significantly associated with subsequent infection. A considerable proportion of CKD patients, especially KTRs, showed absence of humoral and cellular protective immunity against SARS-CoV-2. Strategies to improve immunogenicity in this population are urgently needed.


Asunto(s)
COVID-19 , Insuficiencia Renal Crónica , Vacunas , Adulto , Humanos , SARS-CoV-2 , Inmunidad Celular , Anticuerpos Neutralizantes , Vacunación , Anticuerpos Antivirales , Inmunidad Humoral
4.
EBioMedicine ; 88: 104446, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36706582

RESUMEN

BACKGROUND: Vaccination reduces COVID-19-related hospitalization among older adults. However, how SARS-CoV-2 infection and vaccine regimens affect vaccine-elicited immunity remain unclear. METHODS: This is a cross-sectional study recruiting adults aged ≥70 years with comorbidities in Hong Kong. Demographic and clinical information were collected using a questionnaire. Neutralizing antibody (nAb) titers (against ancestral and Omicron strains) and SARS-CoV-2-specific T cell response were analyzed according to infection and vaccination status. Multivariable regression analysis was performed to assess the associations of BNT162b2 and booster doses with higher nAb titers, with adjustment for comorbidities. FINDINGS: In July 2022, 101 patients were recruited, of whom 25 (24%) had previous infection. Overall, the geometric mean titer (GMT) of BA.5 nAb was 2.8-fold lower than that against BA.2 (P < 0.0001). The ancestral strain and BA.2 titers were higher for the 3-4-dose-BNT162 group than the 2-dose-BNT162b2 group. Non-infected individuals in the 3-4-dose-CoronaVac group had a more robust T cell response than the 2-dose-CoronaVac group (P = 0.0181), but there was no significant difference between the 2-dose-BNT162b2 and 3-4-dose-BNT162b groups. Patients who had heterologous CoronaVac-BNT162b2 prime-boost regimen had 3.22-fold higher BA.5 nAb titers than those who were primed/boosted with CoronaVac (P = 0.0207). Patients with hybrid immunity had higher Omicron nAb titers than those with vaccine-only immunity. Multivariable analysis showed that BNT162b2 and booster doses were independently associated with higher ancestral strain nAb titers. INTERPRETATION: Our data support the use of booster doses for older adults with or without prior infection. Non-infected individuals primed with CoronaVac will benefit from heterologous mRNA vaccine booster. FUNDING: Richard and Carol Yu, May Tam Mak Mei Yin, The Shaw Foundation Hong Kong, Michael Tong, Marina Lee, Government Consultancy Service (See acknowledgements for full list).


Asunto(s)
COVID-19 , Vacunas , Humanos , Anciano , Estudios Transversales , SARS-CoV-2 , Vacuna BNT162 , COVID-19/epidemiología , COVID-19/prevención & control , Inmunidad Celular , Anticuerpos Antivirales , Anticuerpos Neutralizantes
5.
JHEP Rep ; 4(10): 100546, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36052220

RESUMEN

Background & Aims: HEV variants such as swine genotypes within Paslahepevirus species balayani (HEV-A) and rat HEV (Rocahepevirus ratti; HEV-C1) cause chronic hepatitis E in immunocompromised individuals. There are few reliable and accessible small animal models that accurately reflect chronic HEV infection. We aimed to develop an immunocompromised rat model of chronic hepatitis E infection. Methods: In this animal model infection study, rats were immunosuppressed with a drug combination (prednisolone, tacrolimus, and mycophenolate mofetil) commonly taken by transplant recipients. Rats were challenged with human- and rat-derived HEV-C1 strains or a human-derived HEV-A strain. Viral load, liver function, liver histology, humoural, and cellular immune responses were monitored. Results: A high-dose (HD) immunosuppressive regimen consistently prolonged human- and rat-derived HEV-C1 infection in rats (up to 12 weeks post infection) compared with transient infections in low-dose (LD) immunosuppressant-treated and immunocompetent (IC) rats. Mean HEV-C1 viral loads in stool, serum, and liver tissue were higher in HD regimen-treated rats than in LD or IC rats (p <0.05). Alanine aminotransferase elevation was observed in chronically infected rats, which was consistent with histological hepatitis and HEV-C1 antigen expression in liver tissue. None (0/6) of the HD regimen-treated, 5/6 LD regimen-treated, and 6/6 IC rats developed antibodies to HEV-C1 in species-specific immunoblots. Reversal of immunosuppression was associated with clearance of viraemia and restoration of HEV-C1-specific humoural and cellular immune responses in HD regimen-treated rats, mimicking patterns in treated patients with chronic hepatitis E. Viral load suppression was observed with i.p. ribavirin treatment. HD regimen-treated rats remained unsusceptible to HEV-A infection. Conclusions: We developed a scalable immunosuppressed rat model of chronic hepatitis E that closely mimics this infection phenotype in transplant recipients. Lay summary: Convenient small animal models are required for the study of chronic hepatitis E in humans. We developed an animal model of chronic hepatitis E by suppressing immune responses of rats with drugs commonly taken by humans as organ transplant rejection prophylaxis. This model closely mimicked features of chronic hepatitis E in humans.

6.
Emerg Microbes Infect ; 11(1): 2116-2119, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35880656

RESUMEN

The SARS-CoV-2 Omicron variant has led to a major wave of COVID-19 in Hong Kong between January and May 2022. Here, we used seroprevalence to estimate the combined incidence of vaccination and SARS-CoV-2 infection, including subclinical infection which were not diagnosed at the acute stage. The overall seropositive rate of IgG against receptor binding domain (anti-RBD IgG) increased from 52.2% in December 2021 to 89.3% in May 2022. The level of anti-RBD IgG was lowest in the 0-9 and ≥80 year-old age groups in May 2022. The seropositive rate of antibody against ORF8, which reflects the rate of prior infection, was 23.4% in May 2022. Our data suggest that although most individuals were either vaccinated or infected after the fifth wave, children and older adults remain most vulnerable. Public health measures should target these age groups in order to ameliorate the healthcare consequences of upcoming waves.


Asunto(s)
COVID-19 , Anciano , Anciano de 80 o más Años , Anticuerpos Antivirales , COVID-19/epidemiología , Niño , Hong Kong/epidemiología , Humanos , Inmunoglobulina G , SARS-CoV-2 , Estudios Seroepidemiológicos
7.
EBioMedicine ; 79: 103986, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35398786

RESUMEN

BACKGROUND: SARS-CoV-2 Omicron variant evades immunity from past infection or vaccination and is associated with a greater risk of reinfection among recovered COVID-19 patients. We assessed the serum neutralizing antibody (NAb) activity against Omicron variant (Omicron NAb) among recovered COVID-19 patients with or without vaccination. METHODS: In this prospective cohort study with 135 recovered COVID-19 patients, we determined the serum NAb titers against ancestral virus or variants using a live virus NAb assay. We used the receiver operating characteristic analysis to determine the optimal cutoff for a commercially-available surrogate NAb assay. FINDINGS: Among recovered COVID-19 patients, the serum live virus geometric mean Omicron NAb titer was statistically significantly higher among BNT162b2 recipients compared to non-vaccinated individuals (85.4 vs 5.6,P < 0.0001). The Omicron seropositive rates in live virus NAb test (NAb titer ≥10) were statistically significantly higher among BNT162b2 (90.6% [29/32];P < 0.0001) or CoronaVac (36.7% [11/30]; P = 0.0115) recipients when compared with non-vaccinated individuals (12.3% [9/73]). Subgroup analysis of CoronaVac recipients showed that the Omicron seropositive rates were higher among individuals with two doses than those with one dose (85.7% vs 21.7%; P = 0.0045). For the surrogate NAb assay, a cutoff of 109.1 AU/ml, which is 7.3-fold higher than the manufacturer's recommended cutoff, could achieve a sensitivity and specificity of 89.5% and 89.8%, respectively, in detecting Omicron NAb. INTERPRETATION: Among individuals with prior COVID-19, one dose of BNT162b2 or two doses of CoronaVac could induce detectable serum Omicron NAb. Our result would be particularly important for guiding vaccine policies in countries with COVID-19 vaccine shortage. FUNDING: Health and Medical Research Fund, Richard and Carol Yu, Michael Tong (see acknowledgments for full list).


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Anticuerpos Bloqueadores , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacuna BNT162 , COVID-19/prevención & control , Humanos , Estudios Prospectivos , SARS-CoV-2
8.
iScience ; 25(4): 104037, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35330686

RESUMEN

The mucosal antiviral role of type I and III interferon in influenza virus infection is well established. However, much less is known about the antiviral mechanism of type II interferon (interferon-gamma). Here, we revealed an antiviral mechanism of interferon-gamma by inhibiting influenza A virus (IAV) attachment. By direct stochastic optical reconstruction microscopy, confocal microscopy, and flow cytometry, we have shown that interferon-gamma reduced the size of α-2,3 and α-2,6-linked sialic acid clusters, without changing the sialic acid or epidermal growth factor receptor expression levels, or the sialic acid density within cluster on the cell surface of A549 cells. Reversing the effect of interferon-gamma on sialic acid clustering by jasplakinolide reverted the cluster size, improved IAV attachment and replication. Our findings showed the importance of sialic acid clustering in IAV attachment and infection. We also demonstrated the interference of sialic acid clustering as an anti-IAV mechanism of IFN-gamma for IAV infection.

9.
Diagnostics (Basel) ; 11(12)2021 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-34943453

RESUMEN

OBJECTIVES: The emergence of SARS-CoV-2 variants of concern (VOCs) have diminished the effectiveness of vaccines and are associated with a rebound in the number of COVID-19 cases globally. These variants contain mutations at the spike (S) protein receptor binding site (RBD), which affect antibody binding. Current commercially available antibody assays were developed before the VOCs emerged. It is unclear whether the levels of these commercially available antibody assays can predict the neutralizing antibody titers against the VOCs. In this study, we sought to determine the correlation between the binding antibody concentration and microneutralization antibody titer against the beta variant. METHODS: This study included 58 COVID-19 patients. The concentrations of IgG against the SARS-CoV-2 spike protein RBD and nucleocapsid (N) protein were measured using the Abbott SARS-CoV-2 IgG II Quant assay and the SARS-CoV-2 IgG assay, respectively. The neutralization antibody titer against the wild type lineage A SARS-CoV-2 and against the beta variant (B.1.351) was determined using a conventional live virus neutralization test. RESULTS: The geometric mean MN titer (GMT) against the beta variant was significantly lower than that against the wild type lineage A virus (5.6 vs. 47.3, p < 0.0001). The anti-RBD IgG had a better correlation with the neutralizing antibody titer than that of the anti-N IgG assay against the wild type lineage A virus (Spearman rho, 0.5901 vs. 0.3827). However, the correlation between the anti-RBD or the anti-N IgG and the MN titer against the beta variant was poor. CONCLUSIONS: Currently available commercial antibody assays may not predict the level of neutralizing antibodies against the variants. A new generation of antibody tests specific for variants are required.

10.
NPJ Vaccines ; 6(1): 95, 2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34349128

RESUMEN

We previously developed a temperature-sensitive, and NS1 gene deleted live attenuated influenza vaccine (DelNS1-LAIV) and demonstrated its potent protective efficacy in intranasally vaccinated mice. Here we investigated whether intradermal (i.d.) vaccination induces protective immunity. Our results showed that DelNS1-LAIV intradermal vaccination conferred effective and long-lasting protection against lethal virus challenge in mice. A single intradermal injection of DelNS1-LAIV conferred 100% survival with no weight loss in mice after A(H1N1)09 influenza virus (H1N1/415742Md) challenge. DelNS1-LAIV injection resulted in a significant reduction of lung viral load and reduced airway epithelial cell death and lung inflammatory cytokine responses at day 2 and 4 post challenge. Full protections of mice lasted for 6 months after immunization. In vitro infection of DelNS1-LAIV in monocyte-derived dendritic cells (MoDCs) demonstrated activation of antigen-presenting cells at 33 °C, together with the results of abortive replication of DelNS1-LAIV in skin tissue and strong upregulation of inflammatory cytokines/chemokines expression, our results suggested the strong immunogenicity of this vaccine. Further, we demonstrate that the underlying protection mechanism induced by intradermal DelNS1-LAIV is mainly attributed to antibody responses. Together, this study opens up an alternative route for the administration of LAIV, which may benefit individuals not suitable for intranasal LAIV immunization.

11.
Clin Infect Dis ; 73(9): e2946-e2951, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-32840608

RESUMEN

BACKGROUND: Waning immunity occurs in patients who have recovered from Coronavirus Disease 2019 (COVID-19). However, it remains unclear whether true re-infection occurs. METHODS: Whole genome sequencing was performed directly on respiratory specimens collected during 2 episodes of COVID-19 in a patient. Comparative genome analysis was conducted to differentiate re-infection from persistent viral shedding. Laboratory results, including RT-PCR Ct values and serum Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) IgG, were analyzed. RESULTS: The second episode of asymptomatic infection occurred 142 days after the first symptomatic episode in an apparently immunocompetent patient. During the second episode, there was evidence of acute infection including elevated C-reactive protein and SARS-CoV-2 IgG seroconversion. Viral genomes from first and second episodes belong to different clades/lineages. The virus genome from the first episode contained a a stop codon at position 64 of ORF8, leading to a truncation of 58 amino acids. Another 23 nucleotide and 13 amino acid differences located in 9 different proteins, including positions of B and T cell epitopes, were found between viruses from the first and second episodes. Compared to viral genomes in GISAID, the first virus genome was phylogenetically closely related to strains collected in March/April 2020, while the second virus genome was closely related to strains collected in July/August 2020. CONCLUSIONS: Epidemiological, clinical, serological, and genomic analyses confirmed that the patient had re-infection instead of persistent viral shedding from first infection. Our results suggest SARS-CoV-2 may continue to circulate among humans despite herd immunity due to natural infection. Further studies of patients with re-infection will shed light on protective immunological correlates for guiding vaccine design.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , Genoma Viral , Humanos , Reinfección , Secuenciación Completa del Genoma
12.
Vaccines (Basel) ; 8(4)2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33322574

RESUMEN

We previously reported that topical imiquimod can improve the immunogenicity of the influenza vaccine. This study investigated another FDA-approved drug, miltefosine (MTF), as a vaccine adjuvant. Mice immunized with an influenza vaccine with or without MTF adjuvant were challenged by a lethal dose of influenza virus 3 or 7 days after vaccination. Survival, body weight, antibody response, histopathological changes, viral loads, cytokine levels, and T cell frequencies were compared. The MTF-adjuvanted vaccine (MTF-VAC) group had a significantly better survival rate than the vaccine-only (VAC) group, when administered 3 days (80% vs. 26.7%, p = 0.0063) or 7 days (96% vs. 65%, p = 0.0041) before influenza virus challenge. Lung damage was significantly ameliorated in the MTF-VAC group. Antibody response was significantly augmented in the MTF-VAC group against both homologous and heterologous influenza strains. There was a greater T follicular helper cell (TFH) response and an enhanced germinal center (GC) reaction in the MTF-VAC group. MTF-VAC also induced both TH1 and TH2 antigen-specific cytokine responses. MTF improved the efficacy of the influenza vaccine against homologous and heterologous viruses by improving the TFH and antibody responses. Miltefosine may also be used for other vaccines, including the upcoming vaccines for COVID-19.

13.
Lancet Microbe ; 1(3): e111-e118, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-33230504

RESUMEN

BACKGROUND: The role of subclinical severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in perpetuating the COVID-19 pandemic is unknown because population seroprevalence data are absent. We aimed to establish the sensitivity and specificity of our enzyme immunoassay and microneutralisation assay, and the seroprevalence of SARS-CoV-2 in Hong Kong before and after the pandemic, as well as in Hong Kong residents evacuated from Hubei province, China. METHODS: We did a multicohort study in a hospital and university in Hong Kong. We evaluated the sensitivity of our enzyme immunoassay and microneutralisation assay with RT-PCR data from patients positive for SARS-CoV-2 and the specificity of our enzyme immunoassay and microneutralisation assay with archived serum samples collected before 2019. We compared the seropositivity of the general population of Hong Kong before and after the pandemic had begun, and determined the seropositivity of Hong Kong residents evacuated from Hubei province, China, in March, 2020. FINDINGS: Between Feb 26 and March 18, 2020, we assessed RT-PCR samples from 45 patients who had recovered from COVID-19 to establish the sensitivity of our enzyme immunoassay and microneutralisation assay. To establish the specificity of these assays, we retrieved archived serum. The sensitivity was 91·1% (41 of 45 [95% CI 78·8-97·5]) for the microneutralisation assay, 57·8% (26 of 45 [42·2-72·3]) for anti-nucleoprotein IgG, 66·7% (30 of 45 [51·1-80·0]) for anti-spike protein receptor binding domain (RBD) IgG, and 73·3% (33 of 45 [58·1-85·4]) for enzyme immunoassay (either positive for anti-nucleoprotein or anti-RBD IgG). The specificity was 100% (152 of 152 [95% CI 97·6-100·0]) for both the enzyme immunoassay and microneutralisation assay. Among the Hong Kong general population, 53 (2·7%) of 1938 were enzyme immunoassay positive, but of those who were positive, all 53 were microneutralisation negative, and no significant increase was seen in the seroprevalence between April 12, 2018, and Feb 13, 2020. Among asymptomatic Hubei returnees, 17 (4%) of 452 were seropositive with the enzyme immunoassay or the microneutralisation assay, with 15 (88%) of 17 seropositive with the microneutralisation assay, and two familial clusters were identified. INTERPRETATION: Our serological data suggest that SARS-CoV-2 is a new emerging virus. The seropositivity rate in Hubei returnees indicates that RT-PCR-confirmed patients only represent a small proportion of the total number of cases. The low seroprevalence suggests that most of the Hong Kong and Hubei population remain susceptible to COVID-19. Future waves of the outbreak are inevitable without a vaccine or antiviral prophylaxis. The role of age-related cross reactive non-neutralising antibodies in the pathogenesis of COVID-19 warrants further investigation. FUNDING: Richard and Carol Yu, May Tam Mak Mei Yin, Shaw Foundation (Hong Kong), Michael Tong, Marina Lee, and the Government Consultancy Service (see acknowledgments for full list).


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , COVID-19/diagnóstico , China/epidemiología , Hong Kong/epidemiología , Humanos , Inmunoglobulina G , Pandemias , Estudios Seroepidemiológicos
14.
Int J Mol Sci ; 21(18)2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32916926

RESUMEN

Currently available COVID-19 antibody tests using enzyme immunoassay (EIA) or immunochromatographic assay have variable sensitivity and specificity. Here, we developed and evaluated a novel microsphere-based antibody assay (MBA) for detecting immunoglobulin G (IgG) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleoprotein (NP) and spike protein receptor binding domain (RBD). The seropositive cutoff value was set using a cohort of 294 anonymous serum specimens collected in 2018. The specificity was assessed using serum specimens collected from organ donors or influenza patients before 2020. Seropositive rate was determined among COVID-19 patients. Time-to-seropositivity and signal-to-cutoff (S/CO) ratio were compared between MBA and EIA. MBA had a specificity of 100% (93/93; 95% confidence interval (CI), 96-100%) for anti-NP IgG, 98.9% (92/93; 95% CI 94.2-100%) for anti-RBD IgG. The MBA seropositive rate for convalescent COVID-19 patients was 89.8% (35/39) for anti-NP IgG and 79.5% (31/39) for anti-RBD IgG. The time-to-seropositivity was shorter with MBA than EIA. MBA could better differentiate between COVID-19 patients and negative controls with higher S/CO ratio for COVID-19 patients, lower S/CO ratio with negative controls and fewer specimens in the equivocal range. MBA is robust, simple and is suitable for clinical microbiology laboratory for the accurate determination of anti-SARS-CoV-2 antibodies for diagnosis, serosurveillance, and vaccine trials.


Asunto(s)
Anticuerpos Antivirales/sangre , Infecciones por Coronavirus/sangre , Proteínas de la Nucleocápside/inmunología , Neumonía Viral/sangre , Pruebas Serológicas/métodos , Glicoproteína de la Espiga del Coronavirus/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Antivirales/inmunología , COVID-19 , Niño , Preescolar , Infecciones por Coronavirus/diagnóstico , Proteínas de la Nucleocápside de Coronavirus , Femenino , Humanos , Lactante , Masculino , Microesferas , Persona de Mediana Edad , Pandemias , Fosfoproteínas , Neumonía Viral/diagnóstico , Sensibilidad y Especificidad , Pruebas Serológicas/normas
15.
Emerg Microbes Infect ; 9(1): 1664-1670, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32618497

RESUMEN

Coronavirus disease 2019 (COVID-19) has a wide spectrum of disease severity from mild upper respiratory symptoms to respiratory failure. The role of neutralizing antibody (NAb) response in disease progression remains elusive. This study determined the seroprevalence of 733 non-COVID-19 individuals from April 2018 to February 2020 in the Hong Kong Special Administrative Region and compared the neutralizing antibody (NAb) responses of eight COVID-19 patients admitted to the intensive care unit (ICU) with those of 42 patients not admitted to the ICU. We found that NAb against SARS-CoV-2 was not detectable in any of the anonymous serum specimens from the 733 non-COVID-19 individuals. The peak serum geometric mean NAb titer was significantly higher among the eight ICU patients than the 42 non-ICU patients (7280 [95% confidence interval (CI) 1468-36099]) vs (671 [95% CI, 368-1223]). Furthermore, NAb titer increased significantly at earlier infection stages among ICU patients than among non-ICU patients. The median number of days to reach the peak Nab titers after symptoms onset was shorter among the ICU patients (17.6) than that of the non-ICU patients (20.1). Multivariate analysis showed that oxygen requirement and fever during admission were the only clinical factors independently associated with higher NAb titers. Our data suggested that SARS-CoV-2 was unlikely to have silently spread before the COVID-19 emergence in Hong Kong. ICU patients had an accelerated and augmented NAb response compared to non-ICU patients, which was associated with disease severity. Further studies are required to understand the relationship between high NAb response and disease severity.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Betacoronavirus/inmunología , Infecciones por Coronavirus/inmunología , Neumonía Viral/inmunología , Adulto , Anciano , COVID-19 , Células Cultivadas , Femenino , Humanos , Unidades de Cuidados Intensivos , Masculino , Persona de Mediana Edad , Pandemias , SARS-CoV-2
16.
J Exp Med ; 205(6): 1269-76, 2008 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-18490491

RESUMEN

The nuclear factor kappaB (NF-kappaB) pathway plays a central role in inflammation and immunity. In response to proinflammatory cytokines and pathogen-associated molecular patterns, NF-kappaB activation is controlled by IkappaB kinase (IKK)beta. Using Cre/lox-mediated gene targeting of IKKbeta, we have uncovered a tissue-specific role for IKKbeta during infection with group B streptococcus. Although deletion of IKKbeta in airway epithelial cells had the predicted effect of inhibiting inflammation and reducing innate immunity, deletion of IKKbeta in the myeloid lineage unexpectedly conferred resistance to infection that was associated with increased expression of interleukin (IL)-12, inducible nitric oxide synthase (NOS2), and major histocompatibility complex (MHC) class II by macrophages. We also describe a previously unknown role for IKKbeta in the inhibition of signal transducer and activator of transcription (Stat)1 signaling in macrophages, which is critical for IL-12, NOS2, and MHC class II expression. These studies suggest that IKKbeta inhibits the "classically" activated or M1 macrophage phenotype during infection through negative cross talk with the Stat1 pathway. This may represent a mechanism to prevent the over-exuberant activation of macrophages during infection and contribute to the resolution of inflammation. This establishes a new role for IKKbeta in the regulation of macrophage activation with important implications in chronic inflammatory disease, infection, and cancer.


Asunto(s)
Quinasa I-kappa B/inmunología , Quinasa I-kappa B/fisiología , Inflamación/prevención & control , Inflamación/fisiopatología , Activación de Macrófagos/fisiología , Macrófagos/fisiología , Animales , Eliminación de Gen , Antígenos HLA-D/inmunología , Humanos , Quinasa I-kappa B/genética , Inmunidad Innata , Macrófagos/inmunología , Ratones , Ratones Noqueados , Ratones Transgénicos , Neumonía Neumocócica/inmunología , Infecciones Estreptocócicas/inmunología , Streptococcus agalactiae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA