Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 7678, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37169829

RESUMEN

Cell-cycle control is accomplished by cyclin-dependent kinases (CDKs), motivating extensive research into CDK targeting small-molecule drugs as cancer therapeutics. Here we use combinatorial CRISPR/Cas9 perturbations to uncover an extensive network of functional interdependencies among CDKs and related factors, identifying 43 synthetic-lethal and 12 synergistic interactions. We dissect CDK perturbations using single-cell RNAseq, for which we develop a novel computational framework to precisely quantify cell-cycle effects and diverse cell states orchestrated by specific CDKs. While pairwise disruption of CDK4/6 is synthetic-lethal, only CDK6 is required for normal cell-cycle progression and transcriptional activation. Multiple CDKs (CDK1/7/9/12) are synthetic-lethal in combination with PRMT5, independent of cell-cycle control. In-depth analysis of mRNA expression and splicing patterns provides multiple lines of evidence that the CDK-PRMT5 dependency is due to aberrant transcriptional regulation resulting in premature termination. These inter-dependencies translate to drug-drug synergies, with therapeutic implications in cancer and other diseases.


Asunto(s)
Neoplasias , Humanos , Puntos de Control del Ciclo Celular , Ciclo Celular/genética , Neoplasias/tratamiento farmacológico , Proteína-Arginina N-Metiltransferasas/farmacología
2.
Cancer Res ; 81(24): 6078-6079, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34911780

RESUMEN

Oncogenesis relies on the alteration of multiple driver genes, but precisely which groups of alterations lead to cancer is not well understood. To chart these combinations, Zhao and colleagues use the CRISPR-Cas9 system to knockout all pairwise combinations among 52 tumor suppressor genes, with the goal of identifying groups of alterations that collaborate to promote cell growth. Interaction screens are performed across multiple models of tumorigenesis in cell cultures and mice, revealing clear cooperation among NF2, PTEN, and TP53 in multiple models. These and other strongly synergistic interactions are characterized further by single-cell transcriptomic profiling. This methodology presents a scalable approach to move beyond single-gene drivers to map the complex gene networks that give rise to tumorigenesis.See related article by Zhao et al., p. 6090.


Asunto(s)
Sistemas CRISPR-Cas , Carcinogénesis , Animales , Carcinogénesis/genética , Transformación Celular Neoplásica/genética , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Ratones
3.
Nat Cancer ; 2(2): 233-244, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-34223192

RESUMEN

Cell-line screens create expansive datasets for learning predictive markers of drug response, but these models do not readily translate to the clinic with its diverse contexts and limited data. In the present study, we apply a recently developed technique, few-shot machine learning, to train a versatile neural network model in cell lines that can be tuned to new contexts using few additional samples. The model quickly adapts when switching among different tissue types and in moving from cell-line models to clinical contexts, including patient-derived tumor cells and patient-derived xenografts. It can also be interpreted to identify the molecular features most important to a drug response, highlighting critical roles for RB1 and SMAD4 in the response to CDK inhibition and RNF8 and CHD4 in the response to ATM inhibition. The few-shot learning framework provides a bridge from the many samples surveyed in high-throughput screens (n-of-many) to the distinctive contexts of individual patients (n-of-one).


Asunto(s)
Aprendizaje Automático , Redes Neurales de la Computación , Proteínas de Unión al ADN , Humanos , Ubiquitina-Proteína Ligasas
4.
Cancer Cell ; 38(5): 672-684.e6, 2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-33096023

RESUMEN

Most drugs entering clinical trials fail, often related to an incomplete understanding of the mechanisms governing drug response. Machine learning techniques hold immense promise for better drug response predictions, but most have not reached clinical practice due to their lack of interpretability and their focus on monotherapies. We address these challenges by developing DrugCell, an interpretable deep learning model of human cancer cells trained on the responses of 1,235 tumor cell lines to 684 drugs. Tumor genotypes induce states in cellular subsystems that are integrated with drug structure to predict response to therapy and, simultaneously, learn biological mechanisms underlying the drug response. DrugCell predictions are accurate in cell lines and also stratify clinical outcomes. Analysis of DrugCell mechanisms leads directly to the design of synergistic drug combinations, which we validate systematically by combinatorial CRISPR, drug-drug screening in vitro, and patient-derived xenografts. DrugCell provides a blueprint for constructing interpretable models for predictive medicine.


Asunto(s)
Antineoplásicos/uso terapéutico , Biología Computacional/métodos , Neoplasias/tratamiento farmacológico , Antineoplásicos/farmacología , Línea Celular Tumoral , Bases de Datos Factuales , Aprendizaje Profundo , Ensayos de Selección de Medicamentos Antitumorales , Sinergismo Farmacológico , Genotipo , Humanos , Neoplasias/genética , Modelación Específica para el Paciente
6.
iScience ; 16: 155-161, 2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31174177

RESUMEN

We present an accessible, fast, and customizable network propagation system for pathway boosting and interpretation of genome-wide association studies. This system-NAGA (Network Assisted Genomic Association)-taps the NDEx biological network resource to gain access to thousands of protein networks and select those most relevant and performative for a specific association study. The method works efficiently, completing genome-wide analysis in under 5 minutes on a modern laptop computer. We show that NAGA recovers many known disease genes from analysis of schizophrenia genetic data, and it substantially boosts associations with previously unappreciated genes such as amyloid beta precursor. On this and seven other gene-disease association tasks, NAGA outperforms conventional approaches in recovery of known disease genes and replicability of results. Protein interactions associated with disease are visualized and annotated in Cytoscape, which, in addition to standard programmatic interfaces, allows for downstream analysis.

7.
Cell Syst ; 8(4): 275-280, 2019 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-31022372

RESUMEN

Biological networks can substantially boost power to identify disease genes in genome-wide association studies. To explore different network GWAS methods, we challenged students of a UC San Diego graduate level bioinformatics course, Network Biology and Biomedicine, to explore and improve such algorithms during a four-week-long classroom competition. Here, we report the many creative solutions and share our experiences in conducting classroom crowd science as both a research and pedagogical tool.


Asunto(s)
Biología Computacional/educación , Colaboración de las Masas/métodos , Estudio de Asociación del Genoma Completo/métodos , Educación de Postgrado/métodos , Humanos
8.
Cell Syst ; 8(3): 267-273.e3, 2019 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-30878356

RESUMEN

Systems biology requires not only genome-scale data but also methods to integrate these data into interpretable models. Previously, we developed approaches that organize omics data into a structured hierarchy of cellular components and pathways, called a "data-driven ontology." Such hierarchies recapitulate known cellular subsystems and discover new ones. To broadly facilitate this type of modeling, we report the development of a software library called the Data-Driven Ontology Toolkit (DDOT), consisting of a Python package (https://github.com/idekerlab/ddot) to assemble and analyze ontologies and a web application (http://hiview.ucsd.edu) to visualize them. Using DDOT, we programmatically assemble a compendium of ontologies for 652 diseases by integrating gene-disease mappings with a gene similarity network derived from omics data. For example, the ontology for Fanconi anemia describes known and novel disease mechanisms in its hierarchy of 194 genes and 74 subsystems. DDOT provides an easy interface to share ontologies online at the Network Data Exchange.


Asunto(s)
Ontologías Biológicas , Biología Computacional/métodos , Redes Reguladoras de Genes , Programas Informáticos , Ontología de Genes , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...