Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Math Biosci Eng ; 20(5): 8708-8726, 2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-37161218

RESUMEN

Nowadays, the increasing number of medical diagnostic data and clinical data provide more complementary references for doctors to make diagnosis to patients. For example, with medical data, such as electrocardiography (ECG), machine learning algorithms can be used to identify and diagnose heart disease to reduce the workload of doctors. However, ECG data is always exposed to various kinds of noise and interference in reality, and medical diagnostics only based on one-dimensional ECG data is not trustable enough. By extracting new features from other types of medical data, we can implement enhanced recognition methods, called multimodal learning. Multimodal learning helps models to process data from a range of different sources, eliminate the requirement for training each single learning modality, and improve the robustness of models with the diversity of data. Growing number of articles in recent years have been devoted to investigating how to extract data from different sources and build accurate multimodal machine learning models, or deep learning models for medical diagnostics. This paper reviews and summarizes several recent papers that dealing with multimodal machine learning in disease detection, and identify topics for future research.


Asunto(s)
Diagnóstico por Imagen , Aprendizaje Automático , Humanos , Conjuntos de Datos como Asunto
2.
Appl Intell (Dordr) ; 51(7): 4162-4198, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34764574

RESUMEN

Measuring the spread of disease during a pandemic is critically important for accurately and promptly applying various lockdown strategies, so to prevent the collapse of the medical system. The latest pandemic of COVID-19 that hits the world death tolls and economy loss very hard, is more complex and contagious than its precedent diseases. The complexity comes mostly from the emergence of asymptomatic patients and relapse of the recovered patients which were not commonly seen during SARS outbreaks. These new characteristics pertaining to COVID-19 were only discovered lately, adding a level of uncertainty to the traditional SEIR models. The contribution of this paper is that for the COVID-19 epidemic, which is infectious in both the incubation period and the onset period, we use neural networks to learn from the actual data of the epidemic to obtain optimal parameters, thereby establishing a nonlinear, self-adaptive dynamic coefficient infectious disease prediction model. On the basis of prediction, we considered control measures and simulated the effects of different control measures and different strengths of the control measures. The epidemic control is predicted as a continuous change process, and the epidemic development and control are integrated to simulate and forecast. Decision-making departments make optimal choices. The improved model is applied to simulate the COVID-19 epidemic in the United States, and by comparing the prediction results with the traditional SEIR model, SEAIRD model and adaptive SEAIRD model, it is found that the adaptive SEAIRD model's prediction results of the U.S. COVID-19 epidemic data are in good agreement with the actual epidemic curve. For example, from the prediction effect of these 3 different models on accumulative confirmed cases, in terms of goodness of fit, adaptive SEAIRD model (0.99997) ≈ SEAIRD model (0.98548) > Classical SEIR model (0.66837); in terms of error value: adaptive SEAIRD model (198.6563) < < SEAIRD model(4739.8577) < < Classical SEIR model (22,652.796); The objective of this contribution is mainly on extending the current spread prediction model. It incorporates extra compartments accounting for the new features of COVID-19, and fine-tunes the new model with neural network, in a bid of achieving a higher level of prediction accuracy. Based on the SEIR model of disease transmission, an adaptive model called SEAIRD with internal source and isolation intervention is proposed. It simulates the effects of the changing behaviour of the SARS-CoV-2 in U.S. Neural network is applied to achieve a better fit in SEAIRD. Unlike the SEIR model, the adaptive SEAIRD model embraces multi-group dynamics which lead to different evolutionary trends during the epidemic. Through the risk assessment indicators of the adaptive SEAIRD model, it is convenient to measure the severity of the epidemic situation for consideration of different preventive measures. Future scenarios are projected from the trends of various indicators by running the adaptive SEAIRD model.

3.
Phys Biol ; 18(4)2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-33873177

RESUMEN

In this paper, we demonstrate the application of MATLAB to develop a pandemic prediction system based on Simulink. The susceptible-exposed-asymptomatic but infectious-symptomatic and infectious (severe infected population + mild infected population)-recovered-deceased (SEAI(I1+I2)RD) physical model for unsupervised learning and two types of supervised learning, namely, fuzzy proportional-integral-derivative (PID) and wavelet neural-network PID learning, are used to build a predictive-control system model that enables self-learning artificial intelligence (AI)-based control. After parameter setting, the data entering the model are predicted, and the value of the data set at a future moment is calculated. PID controllers are added to ensure that the system does not diverge at the beginning of iterative learning. To adapt to complex system conditions and afford excellent control, a wavelet neural-network PID control strategy is developed that can be adjusted and corrected in real time, according to the output error.


Asunto(s)
COVID-19/epidemiología , Simulación por Computador , Modelos Biológicos , COVID-19/transmisión , Aprendizaje Profundo , Lógica Difusa , Humanos , India/epidemiología , Redes Neurales de la Computación , Dinámicas no Lineales , Pandemias , SARS-CoV-2/fisiología , Estados Unidos/epidemiología
4.
Cognit Comput ; 12(5): 1011-1023, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32837591

RESUMEN

The coronavirus disease (COVID-19) caused by a novel coronavirus, SARS-CoV-2, has been declared a global pandemic. Due to its infection rate and severity, it has emerged as one of the major global threats of the current generation. To support the current combat against the disease, this research aims to propose a machine learning-based pipeline to detect COVID-19 infection using lung computed tomography scan images (CTI). This implemented pipeline consists of a number of sub-procedures ranging from segmenting the COVID-19 infection to classifying the segmented regions. The initial part of the pipeline implements the segmentation of the COVID-19-affected CTI using social group optimization-based Kapur's entropy thresholding, followed by k-means clustering and morphology-based segmentation. The next part of the pipeline implements feature extraction, selection, and fusion to classify the infection. Principle component analysis-based serial fusion technique is used in fusing the features and the fused feature vector is then employed to train, test, and validate four different classifiers namely Random Forest, K-Nearest Neighbors (KNN), Support Vector Machine with Radial Basis Function, and Decision Tree. Experimental results using benchmark datasets show a high accuracy (> 91%) for the morphology-based segmentation task; for the classification task, the KNN offers the highest accuracy among the compared classifiers (> 87%). However, this should be noted that this method still awaits clinical validation, and therefore should not be used to clinically diagnose ongoing COVID-19 infection.

5.
Appl Soft Comput ; 93: 106282, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32362799

RESUMEN

In the advent of the novel coronavirus epidemic since December 2019, governments and authorities have been struggling to make critical decisions under high uncertainty at their best efforts. In computer science, this represents a typical problem of machine learning over incomplete or limited data in early epidemic Composite Monte-Carlo (CMC) simulation is a forecasting method which extrapolates available data which are broken down from multiple correlated/casual micro-data sources into many possible future outcomes by drawing random samples from some probability distributions. For instance, the overall trend and propagation of the infested cases in China are influenced by the temporal-spatial data of the nearby cities around the Wuhan city (where the virus is originated from), in terms of the population density, travel mobility, medical resources such as hospital beds and the timeliness of quarantine control in each city etc. Hence a CMC is reliable only up to the closeness of the underlying statistical distribution of a CMC, that is supposed to represent the behaviour of the future events, and the correctness of the composite data relationships. In this paper, a case study of using CMC that is enhanced by deep learning network and fuzzy rule induction for gaining better stochastic insights about the epidemic development is experimented. Instead of applying simplistic and uniform assumptions for a MC which is a common practice, a deep learning-based CMC is used in conjunction of fuzzy rule induction techniques. As a result, decision makers are benefited from a better fitted MC outputs complemented by min-max rules that foretell about the extreme ranges of future possibilities with respect to the epidemic.

6.
J Adv Res ; 16: 15-23, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30899585

RESUMEN

A Gaussian mixture model (GMM)-based classification technique is employed for a quantitative global assessment of brain tissue changes by using pixel intensities and contrast generated by b-values in diffusion tensor imaging (DTI). A hemisphere approach is also proposed. A GMM identifies the variability in the main brain tissues at a macroscopic scale rather than searching for tumours or affected areas. The asymmetries of the mixture distributions between the hemispheres could be used as a sensitive, faster tool for early diagnosis. The k-means algorithm optimizes the parameters of the mixture distributions and ensures that the global maxima of the likelihood functions are determined. This method has been illustrated using 18 sub-classes of DTI data grouped into six levels of diffusion weighting (b = 0; 250; 500; 750; 1000 and 1250 s/mm2) and three main brain tissues. These tissues belong to three subjects, i.e., healthy, multiple haemorrhage areas in the left temporal lobe and ischaemic stroke. The mixing probabilities or weights at the class level are estimated based on the sub-class-level mixing probability estimation. Furthermore, weighted Euclidean distance and multiple correlation analysis are applied to analyse the dissimilarity of mixing probabilities between hemispheres and subjects. The silhouette data evaluate the objective quality of the clustering. By using a GMM in the present study, we establish an important variability in the mixing probability associated with white matter and grey matter between the left and right hemispheres.

7.
J Med Syst ; 42(4): 74, 2018 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-29525900

RESUMEN

Medical cyber-physical systems (MCPS) are healthcare critical integration of a network of medical devices. These systems are progressively used in hospitals to achieve a continuous high-quality healthcare. The MCPS design faces numerous challenges, including inoperability, security/privacy, and high assurance in the system software. In the current work, the infrastructure of the cyber-physical systems (CPS) are reviewed and discussed. This article enriched the researches of the networked Medical Device (MD) systems to increase the efficiency and safety of the healthcare. It also can assist the specialists of medical device to overcome crucial issues related to medical devices, and the challenges facing the design of the medical device's network. The concept of the social networking and its security along with the concept of the wireless sensor networks (WSNs) are addressed. Afterward, the CPS systems and platforms have been established, where more focus was directed toward CPS-based healthcare. The big data framework of CPSs is also included.


Asunto(s)
Redes de Comunicación de Computadores/organización & administración , Internet , Monitoreo Ambulatorio/métodos , Tecnología de Sensores Remotos/métodos , Tecnología Inalámbrica/organización & administración , Seguridad Computacional , Humanos , Monitoreo Ambulatorio/normas , Tecnología de Sensores Remotos/normas , Red Social
8.
Med Biol Eng Comput ; 56(4): 709-720, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28891000

RESUMEN

Dengue fever detection and classification have a vital role due to the recent outbreaks of different kinds of dengue fever. Recently, the advancement in the microarray technology can be employed for such classification process. Several studies have established that the gene selection phase takes a significant role in the classifier performance. Subsequently, the current study focused on detecting two different variations, namely, dengue fever (DF) and dengue hemorrhagic fever (DHF). A modified bag-of-features method has been proposed to select the most promising genes in the classification process. Afterward, a modified cuckoo search optimization algorithm has been engaged to support the artificial neural (ANN-MCS) to classify the unknown subjects into three different classes namely, DF, DHF, and another class containing convalescent and normal cases. The proposed method has been compared with other three well-known classifiers, namely, multilayer perceptron feed-forward network (MLP-FFN), artificial neural network (ANN) trained with cuckoo search (ANN-CS), and ANN trained with PSO (ANN-PSO). Experiments have been carried out with different number of clusters for the initial bag-of-features-based feature selection phase. After obtaining the reduced dataset, the hybrid ANN-MCS model has been employed for the classification process. The results have been compared in terms of the confusion matrix-based performance measuring metrics. The experimental results indicated a highly statistically significant improvement with the proposed classifier over the traditional ANN-CS model.


Asunto(s)
Biología Computacional/métodos , Dengue , Perfilación de la Expresión Génica/métodos , Algoritmos , Dengue/clasificación , Dengue/diagnóstico , Dengue/genética , Dengue/metabolismo , Diagnóstico por Computador , Humanos , Redes Neurales de la Computación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...